Skip to main content
Log in

On Distributionally Robust Generalized Nash Games Defined over the Wasserstein Ball

  • Brief Communication
  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper we propose an exact, deterministic, and fully continuous reformulation of generalized Nash games characterized by the presence of soft coupling constraints in the form of distributionally robust (DR) joint chance-constraints (CCs). We first rewrite the underlying uncertain game introducing mixed-integer variables to cope with DR–CCs, where the integer restriction actually amounts to a binary decision vector only, and then extend it to an equivalent deterministic problem with one additional agent handling all those introduced variables. Successively we show that, by means of a careful choice of tailored penalty functions, the extended deterministic game with additional agent can be equivalently recast in a fully continuous setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Adam, L., Branda, M.: Nonlinear chance-constrained problems: Optimality conditions, regularization and solvers. J. Optim. Theory Appl. 170 (2016)

  2. Aghassi, M., Bertsimas, D.: Robust game theory. Math. Program. 107(1), 231–273 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arrigo, A., Ordoudis, C., Kazempour, J., De Grève, Z., Toubeau, J.-F., Vallée, F.: Wasserstein distributionally robust chance-constrained optimization for energy and reserve dispatch: an exact and physically-bounded formulation. Eur. J. Oper. Res. 296(1), 304–322 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization, vol. 28. Princeton University Press, Princeton (2009)

    Book  MATH  Google Scholar 

  5. Bertsimas, D., Gupta, V., Kallus, N.: Data-driven robust optimization. Math. Program. 167(2), 235–292 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, Z., Kuhn, D., Wiesemann, W.: Data-driven chance constrained programs over wasserstein balls. Oper. Res. (2022)

  7. Colman, A.M.: Game Theory and its Applications: In the Social and Biological Sciences. Psychology Press, London (2013)

    Book  Google Scholar 

  8. Duan, C., Jiang, L., Fang, W., Liu, J., Liu, S.: Data-driven distributionally robust energy-reserve-storage dispatch. IEEE Trans. Industr. Inf. 14(7), 2826–2836 (2017)

    Article  Google Scholar 

  9. Fabiani, F.: Pursuing robust decisions in uncertain traffic equilibrium problems. In: 2021 60th IEEE Conference on Decision and Control (CDC) (pp. 5116–5121). IEEE (2021)

  10. Fabiani, F., Grammatico, S.: Multi-vehicle automated driving as a generalized mixed-integer potential game. IEEE Trans. Intell. Transp. Syst. 21(3), 1064–1073 (2019)

    Article  Google Scholar 

  11. Fabiani, F., Margellos, K., Goulart, P. J.: On the robustness of equilibria in generalized aggregative games. In: 2020 59th IEEE Conference on Decision and Control (CDC), pp. 3725–3730. IEEE (2020)

  12. Fabiani, F., Margellos, K., Goulart, P.J.: Probabilistic feasibility guarantees for solution sets to uncertain variational inequalities. Automatica 137, 110120 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fele, F., Margellos, K.: Probably approximately correct Nash equilibrium learning. IEEE Trans. Autom. Control 66(9), 4238–4245 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Franci, B., Grammatico, S.: A distributed forward-backward algorithm for stochastic generalized Nash equilibrium seeking. IEEE Trans. Autom. Control 66(11), 5467–5473 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Franci, B., Grammatico, S.: Stochastic generalized Nash equilibrium seeking in merely monotone games. IEEE Trans. Autom. Control (2021)

  16. Fudenberg, D., Tirole, J.: Game Theory. MIT Press, Cambridge (1991)

    MATH  Google Scholar 

  17. Hummert, S., Bohl, K., Basanta, D., Deutsch, A., Werner, S., Theißen, G., Schroeter, A., Schuster, S.: Evolutionary game theory: cells as players. Mol. BioSyst. 10(12), 3044–3065 (2014)

    Article  Google Scholar 

  18. Kalantari, B., Rosen, J.B.: Penalty for zero-one integer equivalent problem. Math. Program. 24(1), 229–232 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kalantari, B., Rosen, J.B.: Penalty formulation for zero-one nonlinear programming. Discret. Appl. Math. 16(2), 179–182 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kochenderfer, M.J.: Decision Making Under Uncertainty: Theory and Application. MIT Press, Cambridge (2015)

    Book  MATH  Google Scholar 

  21. Lucidi, S., Rinaldi, F.: Exact penalty functions for nonlinear integer programming problems. J. Optim. Theory Appl. 145(3), 479–488 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lucidi, S., Rinaldi, F.: An exact penalty global optimization approach for mixed-integer programming problems. Optim. Lett. 7(2), 297–307 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ma, Z., Callaway, D.S., Hiskens, I.A.: Decentralized charging control of large populations of plug-in electric vehicles. IEEE Trans. Control Syst. Technol. 21(1), 67–78 (2011)

    Article  Google Scholar 

  24. Mohajerin Esfahani, P., Kuhn, D.: Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformulations. Math. Progr. 171(1), 115–166 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Myerson, R.B.: Nash equilibrium and the history of economic theory. J. Econ. Lit. 37(3), 1067–1082 (1999)

    Article  Google Scholar 

  26. Nemirovski, A., Shapiro, A.: Convex approximations of chance constrained programs. SIAM J. Optim. 17(4), 969–996 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nguyen, H.N., Lisser, A., Singh, V.V.: Random games under elliptically distributed dependent joint chance constraints. J. Optim. Theory Appl. 195, 249–264 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  28. Orda, A., Rom, R., Shimkin, N.: Competitive routing in multiuser communication networks. IEEE/ACM Trans. Netw. 1(5), 510–521 (1993)

    Article  Google Scholar 

  29. Peng, G., Zhang, T., Zhu, Q.: A data-driven distributionally robust game using Wasserstein distance. In: International Conference on Decision and Game Theory for Security, pp. 405–421. Springer (2020)

  30. Peng, S., Lisser, A., Singh, V.V., Gupta, N., Balachandar, E.: Games with distributionally robust joint chance constraints. Optim. Lett. 15(6), 1931–1953 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  31. Peng, S., Singh, V.V., Lisser, A.: General sum games with joint chance constraints. Oper. Res. Lett. 46(5), 482–486 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Prelec, D., Loewenstein, G.: Decision making over time and under uncertainty: a common approach. Manage. Sci. 37(7), 770–786 (1991)

    Article  MATH  Google Scholar 

  33. Raghavachari, M.: On connections between zero-one integer programming and concave programming under linear constraints. Oper. Res. 17(4), 680–684 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rahimian, H., Mehrotra, S.: Distributionally robust optimization: a review. arXiv preprint arXiv:1908.05659, (2019)

  35. Ravat, U., Shanbhag, U.V.: On the characterization of solution sets of smooth and nonsmooth convex stochastic Nash games. SIAM J. Optim. 21(3), 1168–1199 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Rinaldi, F.: New results on the equivalence between zero-one programming and continuous concave programming. Optim. Lett. 3(3), 377–386 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Singh, V.V., Jouini, O., Lisser, A.: Existence of Nash equilibrium for chance-constrained games. Oper. Res. Lett. 44(5), 640–644 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. Singh, V.V., Jouini, O., Lisser, A.: Distributionally robust chance-constrained games: existence and characterization of Nash equilibrium. Optim. Lett. 11(7), 1385–1405 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Singh, V.V., Lisser, A.: A characterization of Nash equilibrium for the games with random payoffs. J. Optim. Theory Appl. 178(3), 998–1013 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Singh, V.V., Lisser, A.: A second-order cone programming formulation for two player zero-sum games with chance constraints. Eur. J. Oper. Res. 275(3), 839–845 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  41. Villani, C.: Topics in Optimal Transportation, vol. 58. American Mathematical Society, Providence (2021)

    MATH  Google Scholar 

  42. Wang, L., Jiang, C., Gong, K., Si, R., Shao, H., Liu, W.: Data-driven distributionally robust economic dispatch for distribution network with multiple microgrids. IET Gener. Transm. Distrib. 14(24), 5712–5719 (2020)

    Article  Google Scholar 

  43. Wiesemann, W., Kuhn, D., Sim, M.: Distributionally robust convex optimization. Oper. Res. 62(6), 1358–1376 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wildasin, D.E.: Nash equilibria in models of fiscal competition. J. Public Econ. 35(2), 229–240 (1988)

    Article  Google Scholar 

  45. Xie, W.: On distributionally robust chance constrained programs with Wasserstein distance. Math. Program. 186(1), 115–155 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  46. Yuan, G., Ghanem, B.: Binary optimization via mathematical programming with equilibrium constraints. arXiv preprint arXiv:1608.04425 (2016)

  47. Yuan, G., Ghanem, B.: An exact penalty method for binary optimization based on MPEC formulation. In: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 31 (2017)

  48. Zhang, Y., Zhang, Z., Lim, A., Sim, M.: Robust data-driven vehicle routing with time windows. Oper. Res. 69(2), 469–485 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhu, W.X.: Penalty parameter for linearly constrained 0–1 quadratic programming. J. Optim. Theory Appl. 116(1), 229–239 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Fabiani.

Additional information

Communicated by Martin Schmidt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fabiani, F., Franci, B. On Distributionally Robust Generalized Nash Games Defined over the Wasserstein Ball. J Optim Theory Appl 199, 298–309 (2023). https://doi.org/10.1007/s10957-023-02284-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-023-02284-3

Keywords

Mathematics Subject Classification

Navigation