Skip to main content
Log in

Common Solutions to the Matrix Equations \(AX=B\) and \(XC=D\) on a Subspace

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Let \( \mathbb{S}\mathbb{R}_{{\Omega }}^{n \times n}\) be the set of all \(n \times n\) symmetric matrices on subspace \({\Omega }\), where

$$\begin{aligned} {\Omega }=\{ z \in {\mathbb {R}}{^n}|Gz=0,\,G\in {\mathbb {R}}^{k \times n}\}. \end{aligned}$$

The necessary and sufficient conditions for the matrix equations \(AX=B\) and \(XC=D\) to have a common solution in \(\mathbb{S}\mathbb{R}_{{\Omega }}^{n \times n}\) and also an expression for the general common solution are obtained. Further, the associated optimal approximate problem to a given matrix \({\tilde{X}} \in {\mathbb {R}}^{n\times n}\) is discussed and the optimal approximate solution is elucidated. Finally, a numerical experiment is presented to validate the accuracy of our result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ariasa, M.L., Gonzalezc, M.C.: Proper splittings and reduced solutions of matrix equations. J. Math. Anal. Appl. 505, 125588 (2022)

    Article  MathSciNet  Google Scholar 

  2. Baksalary, J.K.: An elementary development of the equation characterizing best linear unbiased estimators. Linear Algebra Appl. 388, 3–6 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ben-Israel, A., Greville, T.N.E.: Generalized Inverses: Theory and Applications, 2nd edn. Springer, New York (2003)

    MATH  Google Scholar 

  4. Bjerhammar, A.: Rectangular reciprocal matrices with special reference to geodetic calculations. Bull. Gedesique 20, 188–220 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, J., Chen, X.: Special Matrices. Tsinghua University Press, Beijing (2002). (in Chinese)

    Google Scholar 

  6. Cheney, E.W.: Introduction to Approximation Theory. AMS Chelsea Publishing, Providence (1982)

    MATH  Google Scholar 

  7. Chu, D.: The fixed poles of the disturbance decoupling problem and almost stability subspace \({\cal{V} }_{b, g}^\star ({\rm ker}(C))\). Numer. Math. 96, 221–252 (2003)

    Article  MathSciNet  Google Scholar 

  8. Chu, K.-W.E.: Singular value and generalized singular value decomposition and the solution of linear matrix equation. Linear Algebra Appl. 88(89), 83–98 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chu, K.-W.E.: Symmetric solutions of linear matrix equations by matrix decompositions. Linear Algebra Appl. 119, 35–50 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dai, H.: On the symmetric solutions of linear matrix equations. Linear Algebra Appl. 131, 1–7 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dajić, A., Koliha, J.J.: Positive solutions to the equations \(AX=C\) and \(XB=D\) for Hilbert space operators. J. Math. Anal. Appl. 333, 567–576 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Don, F.J.H.: On the symmetric solutions of a linear matrix equation. Linear Algebra Appl. 93, 1–7 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. Futornya, V., Klymchukb, T., Sergeichukc, V.V.: Roth’s solvability criteria for the matrix equations \(AX-{{\hat{X}}}B=C\) and \(X-A{{\hat{X}}}B=C\) over the skew field of quaternions with an involutive automorphism \(q\mapsto \hat{q}\). Linear Algebra Appl. 510, 246–258 (2016)

    Article  MathSciNet  Google Scholar 

  14. Hached, M., Jbilou, K.: Numerical methods for differential linear matrix equations via Krylov subspace methods. J. Comput. Appl. Math. 370, 112674 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hashemi, B.: Sufficient conditions for the solvability of a Sylvester-like absolute value matrix equation. Appl. Math. Lett. 112, 116818 (2021)

    Article  MathSciNet  Google Scholar 

  16. Ivanov, I.G., Hasanov, V.I., Uhlig, F.: Improved methods and starting values to solve the matrix equations \(X\pm A^\ast X^{-1}A=I\) iteratively. Math. Comput. 74, 263–278 (2004)

    Article  MATH  Google Scholar 

  17. Kumar, A., Cardoso, J.R.: Iterative methods for finding commuting solutions of the Yang–Baxter-like matrix equation. Appl. Math. Comput. 333, 246–253 (2018)

    MathSciNet  MATH  Google Scholar 

  18. Lancaster, P., Prells, U.: Inverse problems for damped vibrating systems. J. Sound Vib. 283, 891–914 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lancaster, P., Tismenetsky, M.: The Theory of Matrices. Academic Press, New York (1985)

    MATH  Google Scholar 

  20. Li, Y., Wu, W.: Symmetric and skew-antisymmetric solutions to systems of real quaternion matrix equations. Comput. Math. Appl. 55, 1142–1147 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Liu, Y., Tian, Y.: Max-min problems on the ranks and inertias of the matrix expressions \(A-BXC\pm (BXC)^\ast \) with applications. J. Optim. Theory Appl. 148, 593–622 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mgnus, J.R., Neudecker, H.: The commutation matrix: some properties and applications. Ann. Stat. 7, 381–394 (1979)

    MathSciNet  MATH  Google Scholar 

  23. Mgnus, J.R., Neudecker, H.: The elimination matrix: some lemmas and applications. SIAM J. Algebric Discrete 1, 422–449 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mitra, S.K.: A pair of simultaneous linear matrix equations \(A_1XB_1=C_1, A_2XB_2=C_2\) and a matrix programming problem. Linear Algebra Appl. 131, 107–123 (1990)

    Article  MathSciNet  Google Scholar 

  25. Mitra, S.K.: The matrix equations \(AX=C, XB=D\). Linear Algebra Appl. 59, 171–181 (1984)

    MathSciNet  MATH  Google Scholar 

  26. Mottershead, J.E., Ram, Y.M.: Inverse eigenvalue problems in vibration absorption: passive modification and active control. Mech. Syst. Signal Process. 20, 5–44 (2006)

    Article  Google Scholar 

  27. Radenković, J.N., Cvetković-llić, D., Xu, Q.: Solvability of the system of operator equations \(AX=C, XB=D\) in Hilbert \(C^\ast \)-modules. Ann. Funct. Anal. (2021). https://doi.org/10.1007/s43034-021-00110-3

    Article  MathSciNet  MATH  Google Scholar 

  28. Rogers, G.S.: Matrix Derivatives (Lecture Notes in Statistics), vol. 2. Marcel Dekker Inc., New York (1980)

    Google Scholar 

  29. Santini, P.M., Zenchuk, A.I.: The general solution of the matrix equation \(\omega _i+\sum {_{k = 1}^n{\omega _{x_k}}}{\rho ^{(k)}}(\omega )=\rho (\omega )+[\omega, T{\tilde{\rho }}(\omega )]\). Phys. Lett. A 368, 48–52 (2007)

    Article  Google Scholar 

  30. Shirilord, A., Dehghan, M.: Combined real and imaginary parts method for solving generalized Lyapunov matrix equation. Appl. Numer. Math. 181, 94–109 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  31. Udwadia, F.E.: Structural identification and damage detection from noisy modal data. J. Aerosp. Eng. 18, 179–187 (2005)

    Article  Google Scholar 

  32. Vetter, W.J.: Vector structures and solutions of linear matrix equations. Linear Algebra Appl. 10, 181–188 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, Q.: Bisymmetric and centrosymmetric solutions to systems of real quaternion matrix equations. Comput. Math. Appl. 49, 641–650 (2005)

    MathSciNet  MATH  Google Scholar 

  34. Wang, Q., Woude, J.W., Chang, H.: A system of real quaternion matrix equations with applications. Linear Algebra Appl. 431, 2291–2303 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wu, L.: The Re-positive defininte solutions to the matrix inverse problem \(AX = B\). Linear Algebra Appl. 174, 145–151 (1992)

    MathSciNet  MATH  Google Scholar 

  36. Yasuda, K., Skelton, R.E.: Assigning controllability and observability Gramians in feedback control. J. Guid. Control. Dyn. 14, 878–885 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yuan, Y., Zhang, H., Liu, L.: The Re-nnd and Re-pd solutions to the matrix equations \(AX=C, XB=D\). Linear Multilinear Algebra 70, 3543–3552 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  38. Yuan, Y., Dai, H.: A class of inverse problem for matrices on subspace. Numer. Math. A J. Chin. Univ. 27, 69–76 (2005). (in Chinese)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the editor and the anonymous reviewers for their helpful comments and suggestions, which have improved the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongxin Yuan.

Additional information

Communicated by Firdaus E. Udwadia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, S., Yuan, Y. Common Solutions to the Matrix Equations \(AX=B\) and \(XC=D\) on a Subspace. J Optim Theory Appl 198, 372–386 (2023). https://doi.org/10.1007/s10957-023-02247-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-023-02247-8

Keywords

Mathematics Subject Classification

Navigation