Skip to main content
Log in

Smoothing Procedure for Lipschitzian Equations and Continuity of Solutions

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The paper is devoted to the question of existence of continuous implicit functions for non-smooth equations. The equation \(f(x,\sigma )=0\) is studied with the unknown x and the parameter \(\sigma \). We assume that the mapping which defines the equation is locally Lipschitzian in the unknown variable, the parameter belongs to a topological space, and both the unknown variable and the value of the mapping belong to finite-dimensional spaces. Sufficient conditions for the existence of a continuous implicit function in a neighbourhood of a given value of the parameter and conditions for the existence of a continuous implicit function on a given subset of the parameter space are obtained in terms of the Clarke generalized Jacobian. The key tool of this development is the smoothing of the initial equation and application of recent results on solvability of smooth nonlinear equations and a priori solution estimates. Applications to control and optimization are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arutyunov, A.V., Izmailov, A.F., Zhukovskiy, S.E.: Continuous selections of solutions for locally Lipschitzian equations. J. Optim. Theory Appl. 185, 679–699 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arutyunov, A.V., Zhukovskiy, S.E.: Global and semilocal theorems on implicit and inverse functions in Banach spaces. Sb. Math. 213, 1–41 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arutyunov, A.V., Zhukovskiy, S.E.: On implicit function theorem for locally Lipschitz equations. Math. Program. (2022). https://doi.org/10.1007/s10107-021-01750-y

    Article  MATH  Google Scholar 

  4. Bartle, R.G., Graves, L.M.: Mappings between function spaces. Trans. AMS 72, 400–413 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)

    Book  MATH  Google Scholar 

  6. Clarke, F.: On the inverse function theorem. Pac. J. Math. 64, 97–102 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  7. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  8. Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings, 2nd edn. Springer, New York (2014)

    Book  MATH  Google Scholar 

  9. Engelking, R.: General Topology. Herdelman Verlag, Berlin (1989)

    MATH  Google Scholar 

  10. Gfrerer, H., Mordukhovich, B.: Robinson regularity of parametric constraint systems via variational analysis. SIAM J. Optim. 27, 438–465 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hartman, P.: Ordinary Differential Equations. Wiley, New York (1964)

    MATH  Google Scholar 

  12. Ioffe, A.D.: Implicit functions: a metric theory. Set-Valued Var. Anal. 25, 679–699 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Izmailov, A.F.: Strongly regular nonsmooth generalized equations. Math. Program. Ser. A 147, 581–590 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Izmailov, A.F., Kurennoy, A.S.: On regularity conditions for complementarity problems. Comput. Optim. Appl. 57, 667–684 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Izmailov, A.F., Solodov, M.V.: Newton-Type Methods for Optimization and Variational Problems. Springer, Cham (2014)

    Book  MATH  Google Scholar 

  16. Jaramillo, L.S., Lajara, S., Madiedo, O.: Inversion of nonsmooth maps between Banach spaces. Set-Valued Var. Anal. 27, 921–947 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Levitin, E.S., Milyutin, A.A., Osmolovskii, N.P.: Conditions of high order for a local minimum in problems with constraints. Russ. Math. Surv. 33, 97–168 (1978)

    Article  MATH  Google Scholar 

  18. Magaril-Il’aev, G.G.: The implicit function theorem for Lipschitz maps. Russ. Math. Surv. 33, 209–210 (1978)

    Article  MATH  Google Scholar 

  19. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, Vol. I: Basic Theory. Springer, New York (2006)

    Book  Google Scholar 

  20. Mordukhovich, B.S.: Variational Analysis and Applications. Springer, Cham (2018)

    Book  MATH  Google Scholar 

  21. Mordukhovich, B.S., Wang, B.: Restrictive metric regularity and generalized differential calculus in Banach spaces. Int. J. Math. Math. Sci. 2004(683907), 279–285 (2004)

    MathSciNet  MATH  Google Scholar 

  22. Pourciau, B.H.: Analysis and optimization of Lipschitz continuous mappings. J. Optim. Theory Appl. 22, 311–351 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pourciau, B.H.: Hadamard’s theorem for locally Lipschitzian maps. J. Math. Anal. Appl. 85, 279–285 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  24. Robinson, S.M.: Strongly regular generalized equations. Math. Oper. Res. 5, 43–62 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rockafellar, R.T.: Lagrange multipliers and subderivatives of optimal value functions in nonlinear programming. Math. Program Stud. 17, 28–66 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rockafellar, R.T.: Directional differentiability of the optimal value function in a nonlinear programming problem. Math. Program Stud. 21, 213–226 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998). (Corrected 3rd printing (2009))

  28. Tsar’kov, I.G.: On global existence of an implicit function. Russ. Acad. Sci. Sb. Math. 79, 287–313 (1994)

    MathSciNet  Google Scholar 

  29. Vinter, R.: Optimal Control. Birkhauser, Basel (2010)

    Book  MATH  Google Scholar 

  30. Warga, J.: Derivate containers, inverse functions, and controllability. In: Russell, D.L. (ed.) Calculus of Variations and Control Theory. Academic Press, New York (1976)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey E. Zhukovskiy.

Additional information

Communicated by Alexey F. Izmailov.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research is supported by the Grant of Russian Science Foundation (Project No 22-21-00863, https://rscf.ru/en/project/22-21-00863/).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arutyunov, A.V., Zhukovskiy, S.E. Smoothing Procedure for Lipschitzian Equations and Continuity of Solutions. J Optim Theory Appl 199, 112–142 (2023). https://doi.org/10.1007/s10957-023-02244-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-023-02244-x

Keywords

Mathematics Subject Classification

Navigation