Skip to main content
Log in

Time-Inconsistent LQ Games for Large-Population Systems and Applications

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we formulate a time-inconsistent linear-quadratic (LQ) mean-field game problem for large-population systems. By the Nash certainty equivalence methodology, we construct an auxiliary problem consisting of time-inconsistent LQ control problems for every agent, respectively. An equilibrium, instead of optimal solution, is presented explicitly in the form of linear feedback for each agent in this auxiliary problem. Inspired by the framework of tackling time-inconsistency for control problems, we generalize the definition of \(\epsilon \)-Nash equilibrium for large-population games to the time-inconsistent case. Then, the set of linear feedback controls obtained above can be proved to be an \(\epsilon \)-Nash equilibrium for our original problem. Moreover, we solve a resource investment problem and provide a numerical simulation to illustrate the application of our theoretic results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ainslie, G.: Derivation of “rational’’ economic behavior from hyperbolic discount curves. Am. Econ. Rev. 81, 334–340 (1991)

    Google Scholar 

  2. Alia, I., Chighoub, F., Sohail, A.: The maximum principle in time-inconsistent LQ equilibrium control problem for jump diffusions. Serdica Math. J. 42, 103–138 (2016)

    MathSciNet  MATH  Google Scholar 

  3. Aziz, M., Caines, P.E.: A mean field game computational methodology for decentralized cellular network optimization. IEEE Trans. Control Syst. Technol. 25, 563–576 (2017)

    Article  Google Scholar 

  4. Bauch, C.T., Earn, D.J.D.: Vaccination and the theory of games. Proc. Natl. Acad. Sci. USA 101, 13391–13394 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bjork, T., Murgoci, A., Zhou, X.: Mean-variance portfolio optimization with state dependent risk aversion. Math. Finance 24, 1–24 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Caines, P. E., Huang, M., Malhamé, R. P.: Mean field games. In: Başar, T., Zaccour, G. (eds.) Handbook of Dynamic Game Theory, pp. 345–372. Springer, Berlin (2017)

  7. Caines, P.E., Kizilkale, A.: \(\epsilon \)-Nash equilibria for partially observed LQG mean field games with a major player. IEEE Trans. Autom. Control 62, 3225–3234 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ekeland, I., Lazrak, A.: The golden rule when preferences are time inconsistent. Math. Finan. Econ. 4, 29–55 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ekeland, I., Pirvu, T.A.: Investment and consumption without commitment. Math. Finan. Econ. 2, 57–86 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guéant, O., Lasry, J.M., Lions, P.L.: Mean field games and applications. In: Cousin, A., Crépey, S., Guéant, O., Hobson, D., Jeanblanc, M., Lasry, J.-M., Laurent, J.-P., Lions, P.-L., Tankov, P. (eds.) Paris-Princeton Lectures on Mathematical Finance 2010, pp. 205–266. Springer, Heidelberg (2011)

  11. Hu, Y., Huang, J., Nie, T.: Linear-quadratic-Gaussian mixed mean-field games with heterogeneous input constraints. SIAM J. Control. Optim. 56, 2835–2877 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hu, Y., Jin, H., Zhou, X.: Time-inconsistent stochastic linear-quadratic control. SIAM J. Control. Optim. 50, 1548–1572 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hu, Y., Jin, H., Zhou, X.: Time-inconsistent stochastic linear-quadratic control: characterization and uniqueness of equilibrium. SIAM J. Control. Optim. 55, 1261–1279 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Huang, M.: Large-population LQG games involving a major player: the Nash certainty equivalence principle. SIAM J. Control. Optim. 48, 3318–3353 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Huang, M., Caines, P.E., Malhamé, R.P.: Large-population cost-coupled LQG problems with nonuniform agents: individual-mass behavior and decentralized \(\epsilon \)-Nash equilibria. IEEE Trans. Autom. Control 52, 1560–1571 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Huang, M., Malhamé, R.P., Caines, P.E.: Large population stochastic dynamic games: closed-loop Mckean–Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6, 221–252 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Huang, J., Wang, S., Wu, Z.: Backward mean-field linear-quadratic Gaussian (LQG) games: full and partial information. IEEE Trans. Autom. Control 61, 3784–3796 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lasry, J.M., Lions, P.L.: Jeux à champ moyen i—le cas stationnaire. C. R. Math. 343, 619–625 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lasry, J.M., Lions, P.L.: Jeux à champ moyen. ii horizon fini et contrôle optimal. C. R. Math. 343, 679–684 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lasry, J.M., Lions, P.L.: Mean field games. Jpn. J. Math. 2, 229–260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lucas, R.E., Moll, B.: Knowledge growth and the allocation of time. J. Polit. Econ. 122, 1–51 (2014)

    Article  Google Scholar 

  22. Ma, J., Protter, P., Yong, J.: Solving forward-backward stochastic differential equations explicitly-a four step scheme. Prob. Theory Rel. Fields 98, 339–359 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ma, J., Wu, Z., Zhang, D., Zhang, J.: On wellposedness of forward-backward SDEs-a unified approach. Ann. Appl. Probab. 25, 2168–2214 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Moon, J., Yang, H.J.: Linear-quadratic time-inconsistent mean-field type Stackelberg differential games: time-consistent open-loop solutions. IEEE Trans. Autom. Control 2022, 2979128 (2022)

    Google Scholar 

  25. Nourian, M., Caines, P.E.: \(\epsilon \)-Nash mean field game theory for nonlinear stochastic dynamical systems with major and minor agents. SIAM J. Control. Optim. 51, 3302–3331 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Peng, S., Wu, Z.: Fully coupled forward-backward stochastic differential equations and applications to optimal control. SIAM J. Control. Optim. 37, 825–843 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Strotz, R.H.: Myopia and inconsistency in dynamic utility maximization. Rev. Econ. Stud. 23, 165–180 (1955)

    Article  Google Scholar 

  28. Sun, Z., Guo, X.: Equilibrium for a time-inconsistent stochastic linear-quadratic control system with jumps and its application to the mean-variance problem. J. Optim. Theory Appl. 181, 383–410 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, H., Wu, Z.: Partially observed time-inconsistency recursive optimization problem and application. J. Optim. Theory Appl. 161, 664–687 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, H., Wu, Z.: Time-inconsistent linear-quadratic non-zero sum stochastic differential games with random jumps. Int. J. Control 95, 1864–1874 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wu, Z., Zhuang, Y.: Partially observed time-inconsistent stochastic linear-quadratic control with random jumps. Optim. Control Appl. Methods 39, 230–247 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Xu, R., Zhang, F.: \(\epsilon \)-Nash mean-field games for general linear-quadratic systems with applications. Automatica 114, 108835 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Xu, R., Shi, J.: \(\epsilon \)-Nash mean-field games for linear-quadratic systems with random jumps and applications. Int. J. Control 94, 1415–1425 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yong, J.: A deterministic linear quadratic time-inconsistent optimal control problem. Math. Control Rel. Fields 1, 83–118 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yong, J.: Time-inconsistent optimal control problems and the equilibrium HJB equation. Math. Control Rel. Fields 2, 271–329 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang, J.: Backward Stochastic Differential Equations: From Linear to Fully Nonlinear Theory. Springer, New York (2017)

    Book  MATH  Google Scholar 

  37. Zhou, X., Li, D.: Continuous-time mean-variance portfolio selection: a stochastic LQ framework. Appl. Math. Optim. 42, 19–33 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

H. Wang was supported in part by the Natural Science Foundation of China (11901362). R. Xu was supported in part by the Natural Science Foundation of Shandong Province of China (Grant no. ZR2020MA031, ZR2021MA049), National Natural Science Foundation of China (11971266), the Colleges and Universities Twenty Terms Foundation of Jinan City (2021GXRC100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruimin Xu.

Additional information

Communicated by Fausto Gozzi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Xu, R. Time-Inconsistent LQ Games for Large-Population Systems and Applications. J Optim Theory Appl 197, 1249–1268 (2023). https://doi.org/10.1007/s10957-023-02223-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-023-02223-2

Keywords

Mathematics Subject Classification

Navigation