Skip to main content
Log in

Elasticity Tensor Identification in Elastic Body with Thin Inclusions: Non-coercive Case

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In the paper, we analyze problems of elasticity tensor identification for an elastic body with incorporated thin elastic and rigid inclusions in a non-coercive case. The inclusions are assumed to be delaminated from the surrounding elastic body, thus forming interfacial cracks. We consider inequality-type boundary conditions at the crack faces with unknown set of a contact to provide a mutual non-penetration between the crack faces. The considered problems are characterized by unknown displacement field and elasticity tensor. A formulation of identification problems includes an additional information, which can be found from a measurement. A solution existence of these problems is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Alessandrini, G., Di Cristo, M., Morassi, A., Rosset, E.: Stable determination of an inclusion in an elastic body by boundary measurements. SIAM J. Math. Anal. 46, 2692–2729 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bonnet, M., Constantinescu, A.: Inverse problems in elasticity. Inverse Prob. 21, R1–R50 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chambolle, A., Frankfort, G.A., Margo, J.-J.: When and how do cracks propagate? J. Mech. Phys. Solids 57, 1614–1622 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Durante, T., Mel’nyk, T.A.: Asymptotic analysis of an optimal control problem involving a thick two-level junction with alternate type of controls. J. Opt. Theory Appl. 144, 205–225 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Eskin, G., Ralston, J.: On the inverse boundary value problem for linear isotropic elasticity. Inverse Prob. 18, 907–921 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Frankfort, G.A., Margo, J.-J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46, 1319–1342 (1998)

    Article  MathSciNet  Google Scholar 

  7. Hintermueller, M., Kovtunenko, V.A., Kunisch, K.: Obstacle problems with cohesion: a hemi-variational inequality approach and its efficient numerical solution. SIAM J. Optim. 21, 491–516 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hintermuller, M.: Inverse coefficient problems for variational inequalities: optimality conditions and numerical realization. ESAIM M2AN 35, 129–152 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ikehata, M.: Reconstruction of inclusion from boundary measurements. J. Inverse Ill Posed Probl. 10, 37–65 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jadamba, B., Khan, A.A., Sama, M.: Inverse problems of parameter identification in partial differential equations. Math. Sci. Tech. (2011). https://doi.org/10.1142/9789814338820_0009

    Article  MATH  Google Scholar 

  11. Jadamba, B., Khan, A.A., Racitic, F.: On the inverse problem of identifying Lamé coeffcients in linear elasticity. Comput. Math. Appl. 56, 431–443 (2008)

    Article  MathSciNet  Google Scholar 

  12. Khludnev, A.M.: Elasticity Problems in Non-smooth Domains. Fizmatlit, Moscow (2010)

    Google Scholar 

  13. Khludnev, A.M.: Inverse problems for elastic body with closely located thin inclusions. Z. Angew. Math. Phys. 70, 134 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Khludnev, A.M.: Inverse problem for elastic body with thin elastic inclusion. J. Inverse Ill Posed Probl. 2, 195–209 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Khludnev, A.M., Fankina, I.V.: Equilibrium problem for elastic plate with thin rigid inclusion crossing an external boundary. Z. Angew. Math. Phys. 72, 121 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  16. Khludnev, A.M.: Rigidity parameter identification for thin inclusions located inside elastic bodies. J. Opt. Theory Appl. 172, 281–297 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Khludnev, A.M., Corbo Esposito, A., Faella, L.: Optimal control of parameters for elastic body with thin inclusions. J. Opt. Theory Appl. 184, 293–314 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Khludnev, A.M., Faella, L., Perugia, C.: Optimal control of rigidity parameters of thin inclusions in composite materials. Z. Angew. Math. Phys. 68, 47 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Khludnev, A.M., Popova, T.S.: Equilibrium problem for elastic body with delaminated T-shape inclusion. J. Comput. Appl. Math. 376, 112870 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Knowles, I.: Parameter identification for elliptic problems. J. Comput. Appl. Math. 131, 175–194 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kovtunenko, V.A., Leugering, G.: A shape-topological control problem for nonlinear crack-defect interaction: the anti-plane variational model. SIAM J. Control. Optim. 54, 1329–1351 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kozlov, V.A., Mazya, V.G., Movchan, A.V.: Asymptotic analysis of fields in a multi-structure. Oxford University Press, New York (1999)

    Google Scholar 

  23. Lazarev, N.P., Rudoy, E.M.: Shape sensitivity analysis of Timoshenko plate with a crack under the nonpenetration condition. Z. Angew. Math. Mech. 94, 730–739 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lazarev, N.P.: Shape sensitivity analysis of the energy integrals for the Timoshenko-type plate containing a crack on the boundary of a rigid inclusion. Z. Angew. Math. Phys. 66, 2025–2040 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lazarev, N.P., Semenova, G.: An optimal size of a rigid thin stiffener reinforcing an elastic two-dimensional body on the outer edge. J. Opt. Theory Appl. 178, 614–626 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mallick, P.K.: Fiber-Reinforced Composites Materials, Manufacturing, and Design. Marcel Dekker, Inc., New York (1993)

    Google Scholar 

  27. Nakamura, G., Uhlmann, G.: Identification of Lame parameters by boundary measurements. Am. J. Math. 115, 1161–1187 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nakamura, G., Uhlmann, G.: Global uniqueness for an inverse boundary value problem arising in elasticity. Invent. Math. 118, 457–474 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Panasenko, G.: Multi-scale Modelling for Structures and Composites. Springer, New York (2005)

    MATH  Google Scholar 

  30. Pasternak, I.M.: Plane problem of elasticity theory for anisotropic bodies with thin elastic inclusions. J. Mathem. Sci. 186, 31–47 (2012)

    Article  Google Scholar 

  31. Rudoy, E.M.: Shape derivative of the energy functional in a problem for a thin rigid inclusion in an elastic body. Z. Angew. Math. Phys. 66, 1923–1937 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Saccomandi, G., Beatty, M.F.: Universal relations for fiber-reinforced elastic materials. Math. Mech. Solids 7, 99–110 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Shcherbakov, V.V.: Shape optimization of rigid inclusions in elastic plates with cracks. Z. Angew. Math. Phys. 67, 71 (2016)

    Article  MATH  Google Scholar 

  34. Vatulyan, A.O.: Inverse Problems in Solid Mechanics. Fizmatlit, Moscow (2007)

    Google Scholar 

Download references

Acknowledgements

The research is partially funded by the Ministry of Science and Higher Education of the Russian Federation as part of World-class Research Center program: Advanced Digital Technologies (contract No. 075-15-2020-903 dated 16 November 2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Khludnev.

Additional information

Communicated by Christiane Tammer.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khludnev, A., Rodionov, A. Elasticity Tensor Identification in Elastic Body with Thin Inclusions: Non-coercive Case. J Optim Theory Appl 197, 993–1010 (2023). https://doi.org/10.1007/s10957-023-02216-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-023-02216-1

Keywords

Mathematics Subject Classification

Navigation