Skip to main content
Log in

Conic Relaxations with Stable Exactness Conditions for Parametric Robust Convex Polynomial Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we examine stable exact relaxations for classes of parametric robust convex polynomial optimization problems under affinely parameterized data uncertainty in the constraints. We first show that a parametric robust convex polynomial problem with convex compact uncertainty sets enjoys stable exact conic relaxations under the validation of a characteristic cone constraint qualification. We then show that such stable exact conic relaxations become stable exact semidefinite programming relaxations for a parametric robust SOS-convex polynomial problem, where the uncertainty sets are assumed to be bounded spectrahedra. In addition, under the corresponding constraint qualification, we derive stable exact second-order cone programming relaxations for some classes of parametric robust convex quadratic programs under ellipsoidal uncertainty sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmadi, A.A., Parrilo, P.A.: A convex polynomial that is not SOS-convex. Math. Program. 135, 275–292 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anjos, M., Lasserre, J.B.: Handbook of Semidefinite. Conic and Polynomial Optimization. Springer, USA (2012)

    Book  MATH  Google Scholar 

  3. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton University Press, Princeton (2009)

    Book  MATH  Google Scholar 

  4. Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Math. Oper. Res. 23, 769–805 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ben-Tal, A., Nemirovski, A.: Lectures on modern convex optimization: Analysis, algorithms, and engineering applications. MPS/SIAM Series on Optimization (2001)

  6. Ben-Tal, A., Nemirovski, A.: On tractable approximations of uncertain linear matrix inequalities affected by interval uncertainty. SIAM J. Optim. 12, 811–833 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bertsimas, D., Brown, D., Caramanis, C.: Theory and applications of robust optimization. SIAM Rev. 53, 464–501 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bertsimas, D., Pachamanova, D., Sim, M.: Robust linear optimization under general norms. Oper. Res. Lett. 32, 510–516 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Boyd, S., Vandenberghe, L.: Convex optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  10. Chuong, T.D.: Exact relaxations for parametric robust linear optimization problems. Oper. Res. Lett. 47, 105–109 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chieu, N.H., Feng, J.W., Gao, W., Li, G., Wu, D.: SOS-convex semialgebraic programs and its applications to robust optimization: a tractable class of nonsmooth convex optimization. Set-Valued Var. Anal. 26, 305–326 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Tinh, C.T., Chuong, T.D.: Conic linear programming duals for classes of quadratic semi-infinite programs with applications. J. Optim. Theory Appl. 194, 570–596 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chuong, T.D., Jeyakumar, V.: Convergent hierarchy of SDP relaxations for a class of semi-infinite convex polynomial programs and applications. Appl. Math. Comput. 315, 381–399 (2017)

    MathSciNet  MATH  Google Scholar 

  14. Chuong, T.D., Jeyakumar, V.: A generalized Farkas lemma with a numerical certificate and linear semi-infinite programs with SDP duals. Linear Algebra Appl. 515, 38–52 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chuong, T.D., Jeyakumar, V.: Tight SDP relaxations for a class of robust SOS-convex polynomial programs without the Slater condition. J. Convex Anal. 25, 1159–1182 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Chuong, T.D., Jeyakumar, V., Li, G.: A new bounded degree hierarchy with SOCP relaxations for global polynomial optimization and conic convex semi-algebraic programs. J. Global Optim. 75, 885–919 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dinh, N., Goberna, M.A., López, M.A., Volle, M.: Convexity and closedness in stable robust duality. Optim. Let. 13, 325–339 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Goldfarb, D., Iyengar, G.: Robust convex quadratically constrained programs. Math. Program. 97, 495–515 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Grant, M., Boyd, S.: CVX, Matlab software for disciplined convex programming, version 2.1. http://cvxr.com/cvx, March (2014)

  20. Helton, J.W., Nie, J.: Semidefinite representation of convex sets. Math. Program. Ser. A 122, 21–64 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jeyakumar, V.: Characterizing set containments involving infinite convex constraints and reverse-convex constraints. SIAM J. Optim. 13, 947–959 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jeyakumar, V., Li, G.: Strong duality in robust convex programming: complete characterizations. SIAM J. Optim. 20, 3384–3407 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jeyakumar, V., Li, G.: Exact SDP relaxations for classes of nonlinear semidefinite programming problems. Oper. Res. Let. 40, 529–536 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jeyakumar, V., Li, G.: Exact second-order cone programming relaxations for some nonconvex minimax quadratic optimization problems. SIAM J. Optim. 28, 760–787 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jeyakumar, V., Li, G., Vicente-Pérez, J.: Robust SOS-convex polynomial optimization problems: exact SDP relaxations. Optim. Let. 9, 1–18 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jeyakumar, V., Vicente-Pérez, J.: Dual semidefinite programs without duality gaps for a class of convex minimax programs. J. Optim. Theory Appl. 162, 735–753 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lasserre, J.B.: Convexity in semialgebraic geometry and polynomial optimization. SIAM J. Optim. 19, 1995–2014 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lasserre, J.B.: Moments, Positive Polynomials and Their Applications. Imperial College Press, UK (2009)

    Book  Google Scholar 

  29. Laurent, M.: Sums of squares, moment matrices and optimization over polynomials. Emerging Applications of algebraic Geometry, pp. 157–270. Springer, New York (2009)

    MATH  Google Scholar 

  30. Lee, J.H., Lee, G.M.: On minimizing difference of a SOS-convex polynomial and a support function over a SOS-concave matrix polynomial constraint. Math. Program. 169, 177–198 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming. Linear Algebra Appl. 284, 193–228 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lofberg, J.: YALMIP, A toolbox for modeling and optimization in MATLAB. In: Proceedings of the CACSD Conference, Taipei, Taiwan (2004)

  33. Nemirovskii, A.: Several NP-hard problems arising in robust stability analysis. Math. Control Signals Syst. 6, 99–105 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  34. Nesterov, Y., Nemirovski, A.: Interior-point polynomial algorithms in convex programming. SIAM, Philadelphia (1994)

    Book  Google Scholar 

  35. Parrilo, P.A.: Polynomial optimization, sums of squares, and applications. In: Semidefinite Optimization and Convex Algebraic Geometry. 47-157, MOS-SIAM Ser. Optim., 13, SIAM, Philadelphia, PA (2013)

  36. Ramana, M., Goldman, A.J.: Some geometric results in semidefinite programming. J. Global Optim. 7, 33–50 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  37. Rockafellar, R.T.: Convex analysis. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  38. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38, 49–95 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  39. Vinzant, C.: What is a spectrahedron? Notices Am. Math. Soc. 61, 492–494 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank a reviewer for valuable comments and suggestions which have contributed to a significant improvement in the paper. They are also grateful to Professor V. Jeyakumar for discussing the topic. Research of T.D. Chuong was supported by the National Foundation for Science and Technology Development of Vietnam (NAFOSTED) under grant number 101.01\(-\)2020.09. Research of J. Vicente-Pérez was partially supported by the Ministry of Science, Innovation and Universities of Spain and the European Regional Development Fund (ERDF) of the European Commission, Grant PGC2018-097960-B-C22, and by the Generalitat Valenciana, Grant AICO/2021/165.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thai Doan Chuong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuong, T.D., Vicente-Pérez, J. Conic Relaxations with Stable Exactness Conditions for Parametric Robust Convex Polynomial Problems. J Optim Theory Appl 197, 387–410 (2023). https://doi.org/10.1007/s10957-023-02197-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-023-02197-1

Keywords

Mathematics Subject Classification

Navigation