Skip to main content
Log in

On the Fulfillment of the Complementary Approximate Karush–Kuhn–Tucker Conditions and Algorithmic Applications

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Focusing on smooth constrained optimization problems, and inspired by the complementary approximate Karush–Kuhn–Tucker (CAKKT) conditions, this work introduces the weighted complementary approximate Karush–Kuhn–Tucker (WCAKKT) conditions. They are shown to be verified by limit points generated not only by safeguarded augmented Lagrangian methods, but also by inexact restoration methods, inverse and logarithmic barrier methods, and a penalized algorithm for constrained nonsmooth optimization. Under the analyticity of the feasible set description, and resting upon a desingularization result, the new conditions are proved to be equivalent to the CAKKT conditions. The WCAKKT conditions capture the algebraic elements of the desingularization result needed to characterize CAKKT sequences using a weighted complementarity condition that asymptotically sums zero. Due to its generality and strength, the new condition may help to enlighten the practical performance of algorithms in generating CAKKT sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

Data sharing does not apply to this article as no datasets were generated or analyzed during the current theoretical study.

References

  1. Andreani, R., Fazzio, N.S., Schuverdt, M.L., Secchin, L.D.: A sequential optimality condition related to the quasi-normality constraint qualification and its algorithmic consequences. SIAM J. Optim. 29(1), 743–766 (2019). https://doi.org/10.1137/17M1147330

    Article  MathSciNet  MATH  Google Scholar 

  2. Andreani, R., Fukuda, E.H., Haeser, G., Santos, D.O., Secchin, L.D.: Optimality conditions for nonlinear second-order cone programming and symmetric cone programming (2019). https://optimization-online.org/2019/10/7436/

  3. Andreani, R., Fukuda, E.H., Haeser, G., Santos, D.O., Secchin, L.D.: On the use of Jordan algebras for improving global convergence of an augmented Lagrangian method in nonlinear semidefinite programming. Comput. Optim. Appl. 79(3), 633–648 (2021). https://doi.org/10.1007/s10589-021-00281-8

    Article  MathSciNet  MATH  Google Scholar 

  4. Andreani, R., Haeser, G., Martínez, J.M.: On sequential optimality conditions for smooth constrained optimization. Optimization 60(5), 627–641 (2011). https://doi.org/10.1080/02331930903578700

    Article  MathSciNet  MATH  Google Scholar 

  5. Andreani, R., Haeser, G., Mito, L.M., Ramos, A., Secchin, L.D.: Correction to: on the best achievable quality of limit points of augmented Lagrangian schemes. Numer. Algorithms 90, 879–880 (2022). https://doi.org/10.1007/s11075-021-01241-3

    Article  MathSciNet  MATH  Google Scholar 

  6. Andreani, R., Haeser, G., Mito, L.M., Ramos, A., Secchin, L.D.: On the best achievable quality of limit points of augmented Lagrangian schemes. Numer. Algorithms 90, 851–877 (2022). https://doi.org/10.1007/s11075-021-01212-8

    Article  MathSciNet  MATH  Google Scholar 

  7. Andreani, R., Haeser, G., Schuverdt, M.L., Silva, P.J.S.: A relaxed constant positive linear dependence constraint qualification and applications. Math. Program. 135(1), 255–273 (2012). https://doi.org/10.1007/s10107-011-0456-0

    Article  MathSciNet  MATH  Google Scholar 

  8. Andreani, R., Haeser, G., Schuverdt, M.L., Silva, P.J.S.: Two new weak constraint qualifications and applications. SIAM J. Optim. 22(3), 1109–1135 (2012). https://doi.org/10.1137/110843939

    Article  MathSciNet  MATH  Google Scholar 

  9. Andreani, R., Haeser, G., Secchin, L.D., Silva, P.J.S.: New sequential optimality conditions for mathematical programs with complementarity constraints and algorithmic consequences. SIAM J. Optim. 29(4), 3201–3230 (2019). https://doi.org/10.1137/18M121040X

    Article  MathSciNet  MATH  Google Scholar 

  10. Andreani, R., Martínez, J.M., Ramos, A., Silva, P.J.S.: A cone-continuity constraint qualification and algorithmic consequences. SIAM J. Optim. 26(1), 96–110 (2016). https://doi.org/10.1137/15M1008488

    Article  MathSciNet  MATH  Google Scholar 

  11. Andreani, R., Martínez, J.M., Ramos, A., Silva, P.J.S.: Strict constraint qualifications and sequential optimality conditions for constrained optimization. Math. Oper. Res. 43(3), 693–717 (2018). https://doi.org/10.1287/moor.2017.0879

    Article  MathSciNet  MATH  Google Scholar 

  12. Andreani, R., Martínez, J.M., Santos, L.T., Svaiter, B.F.: On the behaviour of constrained optimization methods when Lagrange multipliers do not exist. Optim. Methods Softw. 29(3), 646–657 (2014). https://doi.org/10.1080/10556788.2013.841692

    Article  MathSciNet  MATH  Google Scholar 

  13. Andreani, R., Martínez, J.M., Svaiter, B.F.: A new sequential optimality condition for constrained optimization and algorithmic consequences. SIAM J. Optim. 20(6), 3533–3554 (2010). https://doi.org/10.1137/090777189

    Article  MathSciNet  MATH  Google Scholar 

  14. Andreani, R., Ramos, A., Ribeiro, A.A., Secchin, L.D., Velazco, A.R.: On the convergence of augmented Lagrangian strategies for nonlinear programming. IMA J. Numer. Anal. 42(2), 1735–1765 (2022). https://doi.org/10.1093/imanum/drab021

    Article  MathSciNet  MATH  Google Scholar 

  15. Andreani, R., Ramos, A., Secchin, L.D.: Improving the global convergence of inexact restoration methods for constrained optimization problems (2022). http://www.optimization-online.org/DB_HTML/2022/03/8851.html

  16. Belotto da Silva, A., Bierstone, E.: Monomialization of a quasianalytic morphism. https://arxiv.org/pdf/1907.09502.pdf (2019)

  17. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific Optimization and Computation Series, 2nd edn. Athena Scientific, Belmont (1999)

    Google Scholar 

  18. Bierstone, E., Milman, P.D.: Semianalytic and subanalytic sets. Publ. Math. l’Inst. Hautes Étud. Sci. 67(1), 5–42 (1988). https://doi.org/10.1007/BF02699126

    Article  MathSciNet  MATH  Google Scholar 

  19. Birgin, E.G., Martínez, J.M.: Practical Augmented Lagrangian Methods for Constrained Optimization. Society for Industrial and Applied Mathematics, Philadelphia (2014). https://doi.org/10.1137/1.9781611973365

  20. Cossart, V., Jannsen, U., Saito, S.: Desingularization: Invariants and Strategy, Lecture Notes in Mathematics, vol. 2270, 1 edn. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52640-5

  21. Cutkosky, S.D.: Monomialization of Morphisms from 3-Folds to Surfaces, Lecture Notes in Mathematics, vol. 1786, 1 edn. Springer, Berlin, Heidelberg (2002). https://doi.org/10.1007/b83848

  22. Dempe, S., Kalashnikov, V., Pérez-Valdés, G.A., Kalashnykova, N.: Bilevel Programming Problems: Theory, Algorithms and Applications to Energy Networks, 1 edn. Energy Systems. Springer, Berlin, Heidelberg (2015). https://doi.org/10.1007/978-3-662-45827-3

  23. Dempe, S., Zemkoho, A.: Bilevel Optimization: Advances and Next Challenges, Springer Optimization and Its Applications, vol. 161, 1 edn. Springer Nature, Switzerland (2020). https://doi.org/10.1007/978-3-030-52119-6

  24. Feehan, P.M.N.: Resolution of singularities and geometric proofs of the Łojasiewicz inequalities. Geom. Topol. 23(7), 3273–3313 (2019). https://doi.org/10.2140/gt.2019.23.3273

    Article  MathSciNet  MATH  Google Scholar 

  25. Forsgren, A., Gill, P.E., Wright, M.H.: Interior methods for nonlinear optimization. SIAM Rev. 44(4), 525–597 (2002). https://doi.org/10.1137/S0036144502414942

    Article  MathSciNet  MATH  Google Scholar 

  26. Gill, P.E., Kungurtsev, V., Robinson, D.P.: A stabilized SQP method: global convergence. IMA J. Numer. Anal. 37(1), 407–443 (2016). https://doi.org/10.1093/imanum/drw004

    Article  MathSciNet  MATH  Google Scholar 

  27. Gill, P.E., Kungurtsev, V., Robinson, D.P.: A shifted primal-dual penalty-barrier method for nonlinear optimization. SIAM J. Optim. 30(2), 1067–1093 (2020). https://doi.org/10.1137/19M1247425

    Article  MathSciNet  MATH  Google Scholar 

  28. Gill, P.E., Robinson, D.P.: A globally convergent stabilized SQP method. SIAM J. Optim. 23(4), 1983–2010 (2013). https://doi.org/10.1137/120882913

    Article  MathSciNet  MATH  Google Scholar 

  29. Gomes-Ruggiero, M.A., Martínez, J.M., Santos, S.A.: Spectral projected gradient method with inexact restoration for minimization with nonconvex constraints. SIAM J. Sci. Comput. 31(3), 1628–1652 (2009). https://doi.org/10.1137/070707828

    Article  MathSciNet  MATH  Google Scholar 

  30. Haeser, G.: On the global convergence of interior-point nonlinear programming algorithms. Comput. Appl. Math. 29(2), 125–138 (2010). https://doi.org/10.1590/S1807-03022010000200003

    Article  MathSciNet  MATH  Google Scholar 

  31. Haeser, G.: A second-order optimality condition with first- and second-order complementarity associated with global convergence of algorithms. Comput. Optim. Appl. 70(2), 615–639 (2018). https://doi.org/10.1007/s10589-018-0005-3

    Article  MathSciNet  MATH  Google Scholar 

  32. Helou, E.S., Santos, S.A., Simões, L.E.A.: Analysis of a new sequential optimality condition applied to mathematical programs with equilibrium constraints. J. Optim. Theory Appl. 185(2), 433–447 (2020). https://doi.org/10.1007/s10957-020-01658-1

    Article  MathSciNet  MATH  Google Scholar 

  33. Helou, E.S., Santos, S.A., Simões, L.E.A.: A new sequential optimality condition for constrained nonsmooth optimization. SIAM J. Optim. 30(2), 1610–1637 (2020). https://doi.org/10.1137/18M1228608

    Article  MathSciNet  MATH  Google Scholar 

  34. Kanzow, C., Raharja, A.B., Schwartz, A.: Sequential optimality conditions for cardinality-constrained optimization problems with applications. Comput. Optim. Appl. 80(1), 185–211 (2021). https://doi.org/10.1007/s10589-021-00298-z

    Article  MathSciNet  MATH  Google Scholar 

  35. Kashiwara, M., Schapira, P.: Sheaves on Manifolds, Grundlehren der mathematischen Wissenschaften, vol. 292, corrected second printing edn. Springer (1994). https://doi.org/10.1007/978-3-662-02661-8

  36. Kovacevic, R.M., Pflug, G.C., Vespucci, M.T.: Handbook of Risk Management in Energy Production and Trading, International Series in Operations Research & Management Science, vol. 199, 1 edn. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-9035-7

  37. Krulikovski, E., Ribeiro, A., Sachine, M.: On the weak stationarity conditions for mathematical programs with cardinality constraints: a unified approach. Appl. Math. Optim. 84, 3451–3473 (2021). https://doi.org/10.1007/s00245-021-09752-0

    Article  MathSciNet  MATH  Google Scholar 

  38. Machado, F.C., de Oliveira Filho, F.M.: Improving the semidefinite programming bound for the kissing number by exploiting polynomial symmetry. Exp. Math. 27(3), 362–369 (2018). https://doi.org/10.1080/10586458.2017.1286273

    Article  MathSciNet  MATH  Google Scholar 

  39. Martínez, J.M., Pilotta, E.A.: Inexact-restoration algorithm for constrained optimization. J. Optim. Theory Appl. 104(1), 135–163 (2000). https://doi.org/10.1023/A:1004632923654

    Article  MathSciNet  MATH  Google Scholar 

  40. Martínez, J.M., Svaiter, B.F.: A practical optimality condition without constraint qualifications for nonlinear programming. J. Optim. Theory Appl. 118(1), 117–133 (2003). https://doi.org/10.1023/A:1024791525441

    Article  MathSciNet  MATH  Google Scholar 

  41. Maurya, J.K., Mishra, S.K.: Strong complementary approximate Karush–Kuhn–Tucker conditions for multiobjective optimization problems. Yugoslav J. Oper. Res. 32(2), 219–234 (2022). https://doi.org/10.2298/YJOR210315024M

    Article  MathSciNet  Google Scholar 

  42. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  43. Prado, R.W., Santos, S.A., Simões, L.E.A.: On the convergence analysis of a penalty algorithm for nonsmooth optimization and its performance for solving hard-sphere problems. Numer. Algorithms 91, 933–957 (2022). https://doi.org/10.1007/s11075-022-01287-x

    Article  MathSciNet  MATH  Google Scholar 

  44. Sussmann, H.J.: Real-analytic desingularization and subanalytic sets: an elementary approach. Trans. Am. Math. Soc. 317(2), 417–461 (1990). (http://www.jstor.org/stable/2001472)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) grant 305010/2020-4, and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Grants 2013/07375-0, 2016/22989-2, 2018/24293-0, 2019/18859-4. The authors are thankful to André Belotto da Silva for the fruitful discussions regarding desingularization and monomialization, as well as to the editor and the reviewers, for the constructive comments that improved the presentation of our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra A. Santos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Alexey F. Izmailov.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prado, R.W., Santos, S.A. & Simões, L.E.A. On the Fulfillment of the Complementary Approximate Karush–Kuhn–Tucker Conditions and Algorithmic Applications. J Optim Theory Appl 197, 705–736 (2023). https://doi.org/10.1007/s10957-023-02189-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-023-02189-1

Keywords

Mathematics Subject Classification

Navigation