Skip to main content
Log in

Diffusive Limit Approximation of Pure-Jump Optimal Stochastic Control Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We consider the diffusive limit of a typical pure-jump Markovian control problem as the intensity of the driving Poisson process tends to infinity. We show that the convergence speed is provided by the Hölder exponent of the Hessian of the limit problem, and explain how correction terms can be constructed. This provides an alternative efficient method for the numerical approximation of the optimal control of a pure-jump problem in situations with very high intensity of jumps. We illustrate this approach in the context of a display advertising auction problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Note that their Assumption (L) is not required since we are considering a finite time interval [0, T], this can be easily seen from the proof of this theorem.

  2. Recall that the competition here models the distribution of the maximum bid of all other participants, so this is the average of the maximum of other participants’ bids.

References

  1. Andrews, B.: Fully nonlinear parabolic equations in two space variables (2004). arXiv:math/0402235

  2. Barles, G.: An Introduction to the Theory of Viscosity Solutions for First-Order Hamilton-Jacobi Equations and Applications, in Hamilton-Jacobi Equations: Approximations. Numerical Analysis and Applications. Springer, New York (2013)

    MATH  Google Scholar 

  3. Bäuerle, N.: Approximation of optimal reinsurance and dividend payout policies. Math. Financ.: Int. J. Math., Stat. Financ. Econ. 14(1), 99–113 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bertsekas, D.P., Shreve, S.E.: Stochastic Optimal Control: The Discrete-Time Case. Academic Press, New York (1978)

    MATH  Google Scholar 

  5. Blum, A., Kumar, V., Rudra, A., Wu, F.: Online learning in online auctions. Theor. Computer Sci. 324(2–3), 137–146 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bouchard, B.: Stochastic targets with mixed diffusion processes and viscosity solutions. Stoch. Processes Appl. 101(2), 273–302 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bouchard, B., Geiss, S., Gobet, E.: First time to exit of a continuous Itô process: general moment estimates and \(L^{1}\)-convergence rate for discrete time approximations. Bernoulli 23(3), 1631–1662 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bouchard, B., Touzi, N.: Weak dynamic programming principle for viscosity solutions. SIAM J. Control Optim. 49(3), 948–962 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brémaud, P.: Point Processes and Queues: Martingale Dynamics. Springer, Cham (1981)

    Book  MATH  Google Scholar 

  10. Bubeck, S., Devanur, N.R., Huang, Z., Niazadeh, R.: Multi-scale online learning: theory and applications to online auctions and pricing. J. Mach. Learn. Res. 20(1), 2248–2284 (2019)

    MathSciNet  MATH  Google Scholar 

  11. Bulow, J., Klemperer, P.: Auctions versus negotiations. Am. Econ. Rev. 86(1), 180–94 (1996)

    Google Scholar 

  12. Cesa-Bianchi, N., Gentile, C., Mansour, Y.: Regret minimization for reserve prices in second-price auctions. IEEE Trans. Inf. Theor. 61(1), 549–564 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, H., Yao, D.: Fundamentals of queueing networks. Stoch Model Appl Probabil 2, 871 (2001)

    Google Scholar 

  14. Cohen, A., Young, V.R.: Rate of convergence of the probability of ruin in the Cramér–Lundberg model to its diffusion approximation. Insurance: Math. Econ. 93, 333–340 (2020)

    MATH  Google Scholar 

  15. Crandall, M.G., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. (N.S.) 27(1), 1–67 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Croissant, L., Abeille, M., Calauzenes, C.: Real-time optimisation for online learning in auctions. In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp 2217–2226. PMLR, 13–18 (Jul 2020)

  17. Fernandez-Tapia, J., Guéant, O., Lasry, J.-M.: Optimal real-time bidding strategies. Appl. Math. Res. Exp 2017(1), 142–183 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Fleming, W.H., Souganidis, P.E.: On the existence of value functions of two-player, zero-sum stochastic differential games. Indiana Univ. Math. J. 38(2), 293–314 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jacod, J., Shiryaev, A.: Limit theorems for stochastic processes, vol. 288. Springer Science & Business Media, Cham (2013)

    MATH  Google Scholar 

  20. Ladyzhenskaia, O.A., Solonnikov, V., Ural’tseva, N.N.: Linear and quasi-linear equations of parabolic type, volume 23. American Mathematical Soc., (1988)

  21. Lieberman, G.M.: Second order parabolic differential equations. World scientific, Singapore (1996)

    Book  MATH  Google Scholar 

  22. Myerson, R.B.: Optimal auction design. Math. Op. Res. 6(1), 58–73 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ostrovsky, M., Schwarz, M.: Reserve prices in internet advertising auctions: A field experiment. In Proceedings of the 12th ACM Conference on Electronic Commerce, EC ’11, pp 59–60, New York, NY, USA (2011). Association for Computing Machinery

  24. Paes Leme, R., Pal, M., Vassilvitskii, S.: A field guide to personalized reserve prices. In Proceedings of the 25th International Conference on World Wide Web, WWW ’16, pp 1093–1102, Republic and Canton of Geneva, CHE, (2016). International World Wide Web Conferences Steering Committee

  25. Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders. J. Financ 16(1), 8–37 (1961)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Bouchard.

Additional information

Communicated by Mihai Sirbu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abeille, M., Bouchard, B. & Croissant, L. Diffusive Limit Approximation of Pure-Jump Optimal Stochastic Control Problems. J Optim Theory Appl 196, 147–176 (2023). https://doi.org/10.1007/s10957-022-02135-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-022-02135-7

Keywords

Navigation