Skip to main content
Log in

Harvesting of a Stochastic Population Under a Mixed Regular-Singular Control Formulation

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This work focuses on optimal harvesting-renewing for a stochastic population. A mixed regular-singular control formulation with a state constraint and regime switching is introduced. The decision-makers either harvest or renew with finite or infinite harvesting/renewing rates. The payoff functions depend on the harvesting/renewing rates. Several properties of the value function are established. The limiting value function as the white noise intensity approaches infinity is identified. The Markov chain approximation method is used to find numerical approximation of the value function and optimal strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alvarez, L.H.R., Shepp, L.A.: Optimal harvesting of stochastically fluctuating populations. J. Math. Biol. 37, 155–177 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alvarez, L.H.R.: Singular stochastic control in the presence of a state-dependent yield structure. Stoch. Process. Appl. 86, 323–343 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alvarez, L.H.R., Hening, A.: Optimal sustainable harvesting of populations in random environments. Stoch. Process. Appl. 150, 678–698 (2022)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ferrari, G.: On a class of singular stochastic control problems for reflected diffusions. J. Math. Anal. Appl. 473(2), 952–979 (2019)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions. Springer, New York (1993)

    MATH  Google Scholar 

  6. Hening, A., Tran, K., Phan, T.T., Yin, G.: Harvesting of interacting stochastic populations. J. Math. Biol. 79(2), 533–570 (2019)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hening, A., Tran, K.: Harvesting and seeding of stochastic populations: analysis and numerical approximation. J. Math. Biol. 81(1), 65–112 (2020)

    Article  MATH  MathSciNet  Google Scholar 

  8. Haussmann, U., Suo, W.: Singular optimal stochastic controls. I. Existence. SIAM J. Control Optim. 33(3), 916–936 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Haussmann, U., Suo, W.: Singular optimal stochastic controls. II. Dynamic programming. SIAM J. Control. Optim. 33(3), 937–959 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  10. Jin, Z., Yin, G., Zhu, C.: Numerical solutions of optimal risk control and dividend optimization policies under a generalized singular control formulation. Autom. J. IFAC 48(8), 1489–1501 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Karatzas, I., Shreve, S.E.: Connections between optimal stopping and singular stochastic control. I. Monotone follower problems. SIAM J. Control. Optim. 22(6), 856–877 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  12. Karatzas, I., Shreve, S.E.: Connections between optimal stopping and singular stochastic control. II. Reflected follower problems. SIAM J. Control. Optim. 23(3), 433–451 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kharroubi, I., Lim, T., Mastrolia, T.: Regulation of renewable resource exploitation. SIAM J. Control. Optim. 58(1), 551–579 (2020)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kunwai, K., Xi, F., Yin, G., Zhu, C.: On an ergodic two-sided singular control problem. Appl. Math. Optim. 86, 26 (2022). https://doi.org/10.1007/s00245-022-09881-0

    Article  MATH  MathSciNet  Google Scholar 

  15. Kushner, H.J., Martins, L.F.: Numerical methods for stochastic singular control problems. SIAM J. Control. Optim. 29(6), 1443–1475 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kushner, H.J., Dupuis, P.G.: Numerical Methods for Stochastic Control Problems in Continuous Time. Springer, New York (1992)

    Book  MATH  Google Scholar 

  17. Lande, R., Engen, S., Sæther, B.: Optimal harvesting of fluctuating populations with a risk of extinction. Am. Nat. 145(5), 728–745 (1995)

  18. Liang, G., Zervos, M.: Ergodic singular stochastic control motivated by the optimal sustainable exploitation of an ecosystem. arXiv preprint arXiv:2008.05576 (2020)

  19. Lungu, E.M., Øksendal, B.: Optimal harvesting from a population in a stochastic crowded environment. Math. Biosci. 145(1), 47–75 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Mao, X., Yuan, C.: Stochastic Differential Equations with Markovian Switching. Imperial College Press, London (2006)

    Book  MATH  Google Scholar 

  21. Nguyen, D.H., Yin, G.: Sustainable harvesting policies under long-run average criteria: near optimality. Appl. Math. Optim. 81(2), 443–478 (2020)

    Article  MATH  MathSciNet  Google Scholar 

  22. Nguyen, D., Nguyen, N., Yin, G.: Stochastic functional Kolmogorov equations I: persistence. Stoch. Process. Appl. 142, 319–364 (2021)

    Article  MATH  MathSciNet  Google Scholar 

  23. Pham, H.: Continuous-Time Stochastic Control and Optimization with Financial Applications, Stochastic Modelling and Applied Probability, vol. 61. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  24. Radner, R., Shepp, L.: Risk vs profit potential: a model for corporate strategy. J. Econ. Dyn. Control 20(8), 1373–1393 (1996)

    Article  MATH  Google Scholar 

  25. Song, Q., Stockbridge, R.H., Zhu, C.: On optimal harvesting problems in random environments. SIAM J. Control. Optim. 49(2), 859–889 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  26. Tran, K., Yin, G.: Optimal harvesting strategies for stochastic ecosystems. IET Control Theory Appl. 11(15), 2521–2530 (2017)

    Article  MathSciNet  Google Scholar 

  27. Tran, K.: Optimal exploitation for hybrid systems of renewable resources under partial observation. Nonlinear Anal. Hybrid Syst. 40, 101013 (2021)

    Article  MATH  MathSciNet  Google Scholar 

  28. Yin, G., Zhu, C.: Hybrid Switching Diffusions: Properties and Applications. Springer, New York (2010)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The research of Ky Q. Tran was supported by the National Research Foundation of Korea grant funded by the Korea Government (MIST) NRF-2021R1F1A1062361. The research of George Yin was supported in part by the National Science Foundation under Grant DMS-2204240.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ky Q. Tran.

Additional information

Communicated by Negash G. Medhin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, K.Q., Le, B.T.N. & Yin, G. Harvesting of a Stochastic Population Under a Mixed Regular-Singular Control Formulation. J Optim Theory Appl 195, 1106–1132 (2022). https://doi.org/10.1007/s10957-022-02127-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-022-02127-7

Keywords

Mathematics Subject Classification

Navigation