Skip to main content
Log in

Levitin–Polyak Well-Posedness by Perturbations for the Split Hemivariational Inequality Problem on Hadamard Manifolds

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The purpose of this paper is to establish some new results on the Levitin–Polyak well-posedness to a class of split hemivariational inequality problems on Hadamard manifolds. We first consider a new class of split hemivariational inequality problems (for short, SHIP) on Hadamard manifolds and introduce the regularized gap functions for these problems. Then, we study the notion of Levitin–Polyak well-posedness by perturbations to SHIP and show the equivalence between the Levitin–Polyak well-posedness by perturbations and the existence of solutions for SHIP under suitable conditions. Furthermore, based on the regularized gap functions for the perturbed SHIP, we establish the criterion for the Levitin–Polyak well-posedness by perturbations for SHIP via the split optimization problems on Hadamard manifolds. Our main results presented in paper are new even in the special case of hemivariational inequality problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anh, L.Q., Hung, N.V.: Levitin–Polyak well-posedness for strong bilevel vector equilibrium problems and applications to traffic network problems with equilibrium constraints. Positivity 22, 1223–1239 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ansari, Q.H., Islam, M., Yao, J.C.: Nonsmooth variational inequalities on Hadamard manifolds. Appl. Anal. 99, 340–358 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bento, G.C., Ferreira, O.P., Oliveira, P.R.: Proximal point method for a special class of nonconvex functions on Hadamard manifolds. Optimization 64, 289–319 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bento, G.C., Ferreira, O.P., Oliveira, P.R.: Proximal point method for vector optimization on Hadamard manifolds. Oper. Res. Lett. 46, 13–18 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Byne, C.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 18, 441–453 (2002)

    Article  MathSciNet  Google Scholar 

  6. Censor, Y., Bortfeld, T., Martin, B., Trofimov, A.: A unified approach for inverse problem in intensity-modulated radiation therapy. Phys. Med. Biol. 51, 2352–2365 (2006)

    Article  Google Scholar 

  7. Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 8, 221–239 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algorithms 59, 301–323 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Combettes, P.L.: The convex feasibility problem in image recovery. Adv. Imaging Electron. Phys. 95, 155–270 (1996)

    Article  Google Scholar 

  10. Fang, Y.P., Huang, N.J., Yao, J.C.: Well-posedness of mixed variational inequalities, inclusion problems and fixed point problems. J. Glob. Optim. 41, 117–133 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fang, Y.P., Huang, N.J., Yao, J.C.: Well-posedness by perturbations of mixed variational inequalities in Banach spaces. Eur. J. Oper. Res. 201, 682–692 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ferreira, O.P.: Dini derivative and a characterization for Lipschitz and convex functions on Riemannian manifolds. Nonlinear Anal. 68, 1517–1528 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Han, Y., Zhang, K., Huang, N.J.: The stability and extended well-posedness of the solution sets for set optimization problems via the Painleve–Kuratowski convergence. Math. Methods Oper. Res. 91, 175–196 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hosseini, S., Pouryayevali, M.R.: Generalized gradients and characterization of epi-Lipschitz sets in Riemannian manifolds. Nonlinear Anal. 74, 3884–3895 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hu, R., Fang, Y.P.: Characterizations of Levitin–Polyak well-posedness by perturbations for the split variational inequality problem. Optimization 65, 1717–1732 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hu, R., Fang, Y.P.: Levitin–Polyak well-posedness by perturbations for the split inverse variational inequality problem. J. Fixed Point Theory Appl. 18, 785–800 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hu, R., Fang, Y.P.: Well-posedness of the split inverse variational inequality problem. Bull. Malays. Math. Sc. Soc. 40, 1733–1744 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Huang, X.X., Yang, X.Q.: Generalized Levitin–Polyak well-posedness in constrained optimization. SIAM J. Optim. 17, 243–258 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hung, N.V.: Generalized Levitin–Polyak well-posedness for controlled systems of FMQHI-fuzzy mixed quasi-hemivariational inequalities of Minty type. J. Comput. Appl. Math. 386, 113263 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hung, N.V.: LP well-posed controlled systems for bounded quasi-equilibrium problems and their application to traffic networks. J. Comput. Appl. Math. 401, 113792 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hung, N.V., Köbis, E., Tam, V.M.: Existence conditions for set-valued vector quasi-equilibrium problems on Hadamard manifolds with variable domination structure and applications. J. Nonlinear Convex Anal. 20, 2597–2612 (2019)

    MathSciNet  MATH  Google Scholar 

  22. Hung, N.V., Tam, V.M., Dumitru, B.: Regularized gap functions and error bounds for split mixed vector quasivariational inequality problems. Math. Methods Appl. Sci. 43, 4614–4626 (2020)

    MathSciNet  MATH  Google Scholar 

  23. Hung, N.V., Köbis, M.A., Tam, V.M.: Existence of solutions to set-valued quasi-variational inclusion problems on Hadamard manifolds and applications. J. Nonlinear Convex Anal. 21, 989–1002 (2020)

    MathSciNet  MATH  Google Scholar 

  24. Hung, N.V., Tam, V.M., Pitea, A.: Global error bounds for mixed quasi-hemivariational inequality problems on Hadamard manifolds. Optimization 69, 2033–2052 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hung, N.V., Migórski, S., Tam, V.M., Zeng, S.D.: Gap functions and error bounds for variational–hemivariational inequalities. Acta Appl. Math. 169, 691–709 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hung, N.V., Tam, V.M., O’Regan, D.: Mixed vector equilibrium-like problems on Hadamard manifolds: error bound analysis. Appl. Anal. http://doi.org/10.1080/00036811.2021.1992393 (2021)

  27. Hung, N.V., Tam, V.M., Liu, Z., Yao, J.C.: A novel approach to Hölder continuity of a class of parametric variational–hemivariational inequalities. Oper. Res. Lett. 49, 283–289 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hung, N.V., Tam, V.M.: Error bound analysis of the D-gap functions for a class of elliptic variational inequalities with applications to frictional contact mechanics. Z. Angew. Math. Phys. 72, 173 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hung, N.V., Tam, V.M., O’Regan, D.: Error bound analysis for split weak vector mixed quasi- variational inequality problems in fuzzy environment. Appl. Anal. (2022) onlinefirst

  30. Hung, N.V., Keller, A.A.: Generalized well-posedness for parametric fuzzy generalized multiobjective games. J. Comput. Appl. Math. (2022) Accepted

  31. Lang, S.: Fundamentals of Differential Geometry. Springer, New York (1998)

    MATH  Google Scholar 

  32. Levitin, E.S., Polyak, B.T.: Convergence of minimizing sequences in conditional extremum problem. Sov. Math. Dokl. 7, 764–767 (1996)

    MATH  Google Scholar 

  33. Li, X.B., Huang, N.J., Ansari, Q.H., Yao, J.C.: Convergence rate of descent method with new inexact line-search on Riemannian manifolds. J. Optim. Theory Appl. 180, 830–854 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Li, C., López, G., Martín-Márquez, V.: Monotone vector fields and the proximal point algorithm on Hadamard manifolds. J. Lond. Math. Soc. 72, 663–683 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, X.B., Xia, F.Q.: Levitin-Polyak well-posedness of a generalized mixed variational inequality in Banach spaces. Nonlinear Anal. 75, 2139–2153 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Migórski, S., Ochal, A., Sofonea, M.: Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems. Springer, New York (2013)

    MATH  Google Scholar 

  37. Németh, S.Z.: Variational inequalities on Hadamard manifolds. Nonlinear Anal. 52, 1491–1498 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. Panagiotopoulos, P.D.: Nonconvex energy functions, hemivariational inequalities and substationarity principles. Acta Mech. 42, 160–183 (1983)

    MathSciNet  MATH  Google Scholar 

  39. Panagiotopoulos, P.D.: Hemivariational Inequalities. Applications to Mechanics and Engineering. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  40. Rapcsák, T.: Smooth Nonlinear Optimization in \(\mathbb{R} ^n\). Kluwer Academic Publishers, Dordrecht (1997)

    Book  MATH  Google Scholar 

  41. Rothaus, O.S.: Domains of positivity. Abh. Math. Sem. Univ. Hamburg 24, 189–235 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sakai, T.: Riemannian Geometry, Transl. Math. Monogr. 149. American Mathematical Society, Providence (RI) (1996)

  43. Shu, Q.Y., Sofonea, M., Xiao, Y.B.: Tykhonov well-posedness of split problems. J. Ineq. Appl. 153 (2020)

  44. Tang, G.J., Zhou, L., Huang, N.J.: Existence results for a class of hemivariational inequality problems on Hadamard manifolds. Optimization 65, 1451–1461 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Tykhonov, A.N.: On the stability of the functional optimization problem. USSR Comput. Math. Math. Phys. 6, 28–33 (1996)

    Article  Google Scholar 

  46. Udriste, C.: Convex Functions and Optimization Methods on Riemannian Manifolds. Kluwer Academic Publishers, Dordrecht (1994)

    Book  MATH  Google Scholar 

  47. Virmani, G., Srivastava, M.: Levitin–Polyak well-posedness of constrained inverse quasivariational inequality. Numer. Funct. Anal. Optim. 38, 91–109 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wang, J., Li, C., López, G., Yao, J.-C.: Proximal point algorithms on Hadamard manifolds: linear convergence and finite termination. SIAM J. Optim. 26, 2696–2729 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  49. Wang, J., Wang, X., Li, C., Yao, J.C.: Convergence analysis of gradient algorithms on Riemannian manifolds without curvature constraints and application to Riemannian mass. SIAM J. Optim. 31, 172–199 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zolezzi, T.: Well-posedness criteria in optimization with application to the calculus of variations. Nonlinear Anal. 25, 437–453 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zolezzi, T.: Extended well-posedness of optimization problems. J. Optim. Theory Appl. 91, 257–266 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees for their valuable remarks which improved the results and presentation of this article. This research was supported by Ministry of Education and Training of Vietnam under Grant No. B2021.SPD.03, NNSF of China Grant No. 12071413 and the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement No. 823731 CONMECH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Van Hung.

Additional information

Communicated by Alexandru Kristály.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tam, V.M., Van Hung, N., Liu, Z. et al. Levitin–Polyak Well-Posedness by Perturbations for the Split Hemivariational Inequality Problem on Hadamard Manifolds. J Optim Theory Appl 195, 684–706 (2022). https://doi.org/10.1007/s10957-022-02111-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-022-02111-1

Keywords

Mathematics Subject Classification

Navigation