Skip to main content
Log in

Semi-definite Representations for Sets of Cubics on the Two-dimensional Sphere

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The compact set of homogeneous quadratic polynomials in n real variables with modulus bounded by 1 on the unit sphere is trivially semi-definite representable. The compact set of homogeneous ternary quartics with modulus bounded by 1 on the unit sphere is also semi-definite representable. This suggests that the compact set of homogeneous ternary cubics with modulus bounded by 1 on the unit sphere is semi-definite representable. We deduce an explicit semi-definite representation of this norm ball. More generally, we provide a semi-definite description of the cone of inhomogeneous ternary cubics which are nonnegative on the unit sphere. This allows to incorporate nonnegativity conditions on polynomials in this space into semi-definite programs by transforming them into semi-definite constraints on the coefficient vector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

No data are associated to this research work.

References

  1. Ahmed, F., Still, G.: Maximization of homogeneous polynomials over the simplex and the sphere: Structure, stability, and generic behavior. J. Optimiz. Theory App. 181, 972–996 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Choi, M.-D., Lam, T.-Y., Reznick, B.: Even symmetric Sextics. Mathematische Zeitschrift 195, 559–580 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hilbert, D.: Über die Darstellung definiter Formen als Summe von Formenquadraten. Mathematische Annalen 32, 342–350 (1888)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hildebrand, R.: Optimal step length for the Newton method: Case of self-concordant functions. Math. Methods. Oper. Res. 94, 253–279 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hildebrand, R., Ivanova, A.: Extremal Cubics on the circle and the 2-sphere. Res. Math. 77, 135 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  6. Nesterov, Y.: Squared functional systems and optimization problems. In: Hans Frenk, Kees Roos, Tamás Terlaky, and Shuzhong Zhang, (eds.) High Performance Optimization, chapter 17, pp 405–440. Kluwer Academic Press, Dordrecht (2000)

  7. Nesterov, Y.: Random walk in a simplex and quadratic optimization over convex polytopes. Discussion paper 2003/71, CORE, Louvain-la-Neuve, (2003)

  8. Nie, J.: Sum of squares methods for minimizing polynomial forms over spheres and hypersurfaces. Front. Math. China 7, 321–346 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Reznick, B.: Some concrete aspects of Hilbert’s 17th problem. Contemp. Math. 253, 251–272 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Sanyal, R., Sottile, F., Sturmfels, B.: Orbitopes. Mathematika 57(2), 275–314 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Saunderson, J.: Certifying polynomial nonnegativity via hyperbolic optimization. SIAM J. Appl. Algebra Geom. 3(4), 661–690 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Scheiderer, C.: Spectrahedral shadows. SIAM J. Appl. Algebra Geom. 2(1), 26–44 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. So, A.M.-C.: Deterministic approximation algorithms for sphere constrained homogeneous polynomial optimization problems. Math. Program 129, 357–382 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Størmer, E.: Positive linear maps of operator algebras. Acta Mathematica 110, 233–278 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  15. Woronowicz, S.L.: Positive maps of low dimensional matrix algebras. Rep. Math. Phys. 10, 165–183 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhang, X., Qi, L., Ye, Y.: The cubic spherical optimization problems. Math. Comput. 81, 1513–1525 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Hildebrand.

Additional information

Communicated by Guoyin Li.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hildebrand, R. Semi-definite Representations for Sets of Cubics on the Two-dimensional Sphere. J Optim Theory Appl 195, 666–675 (2022). https://doi.org/10.1007/s10957-022-02104-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-022-02104-0

Keywords

Mathematics Subject Classification

Navigation