Skip to main content
Log in

Lagrange-Hamilton Approach in Optimization Problems with Isoperimetric-Type Constraints

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper derives necessary optimality conditions for a certain class of optimal control problems without linearity or convexity assumptions. The optimal control problem has a general objective function of integral type and a finite number of isoperimetric type constraints. For proving the main result derived in this paper, the Lagrange function and the control Hamiltonian are introduced and an adjoint differential equation is stated. In addition, we formulate some examples where the derived necessary optimality conditions are applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrachev, A.A., Stefani, G., Zezza, P.: Strong optimality for a bang-bang trajectory. SIAM J. Control. Optim. 41(4), 991–1014 (2002)

    Article  MathSciNet  Google Scholar 

  2. Aronsson, G., Barron, E.N.: \( L^{\infty } \) variational problems with running costs and constraints. Appl. Math. Optim. 65(1), 53–90 (2012)

    Article  MathSciNet  Google Scholar 

  3. Barbu, V., Lasiecka, I., Tiba, D., Vârsan, C.: Analysis and optimization of differential systems, IFIP TC7/WG7.2 International Working conference on analysis and optimization of differential systems, September 10-14, 2002, Constanta, Romania, Kluwer Academic Publishers (2003)

  4. Caputo, M.R.: Economic characterization of reciprocal isoperimetric control problems. J. Optim. Theory Appl. 98(2), 325–350 (1998)

    Article  MathSciNet  Google Scholar 

  5. Caputo, M.R.: Economic characterization of reciprocal isoperimetric control problems revisited. J. Optim. Theory Appl. 101(3), 723–730 (1999)

    Article  MathSciNet  Google Scholar 

  6. Evans, L.C.: An Introduction to Mathematical Optimal Control Theory. University of California, Department of Mathematics, Berkeley, Lecture Notes (2008)

    Google Scholar 

  7. Hestenes, M.R.: Calculus of Variations and Optimal Control Theory. Wiley, New York (1966)

    MATH  Google Scholar 

  8. Kalaba, R., Spingarn, K.: Control, Identification, and lnput Optimization. Plenum, New York (1982)

    Book  Google Scholar 

  9. Kalaba, R., Spingarn, K.: Automatic solution of optimal control problems III: differential and integral constraints. Control Syst. Mag. 4, 3 (1984)

    Article  Google Scholar 

  10. Lee, E.B., Markus, L.: Foundations of Optimal Control Theory. Wiley, Hoboken (1967)

    MATH  Google Scholar 

  11. Lee, E.B.: Linear optimal controI problems with isoperimetric constraints. IEEE Trans. Autom. Control 12, 1 (1967)

    Article  Google Scholar 

  12. Li, L., Jia, Y.: Non-fragile dynamic output feedback control for linear systems with time-varying delay. IET Control Theory Appl. 3(8), 995–1005 (2009)

    Article  MathSciNet  Google Scholar 

  13. Maurer, H., Pickenhain, S.: Second order sufficient conditions for control problems with mixed control-state constraints. J. Optim. Theory Appl. 86(3), 649–667 (1995)

    Article  MathSciNet  Google Scholar 

  14. Mititelu, Şt., Treanţă, S.: Efficiency conditions in vector control problems governed by multiple integrals. J. Appl. Math. Comput. 57, 1–2 (2018)

  15. Rosenblueth, J.F., Sanchez Licea, G.: A direct sufficiency proof for a weak minimum in optimal control. Appl. Math. Sci. 6, 253–269 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Rosenblueth, J.F., Sanchez Licea, G.: Sufficient variational conditions for isoperimetric control problems. Int. Math. Forum 6, 303–324 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Schmitendorf, W.E.: Pontryagin’s principle for problems with isoperimetric constraints and for problems with inequality terminal constraints. J. Optim. Theory Appl. 18(4), 561–567 (1976)

    Article  MathSciNet  Google Scholar 

  18. Treanţă, S.: PDEs of Hamilton-Pfaff type via multi-time optimization problems. U.P.B. Sci. Bull. Ser. A 76, 163–168 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Treanţă, S.: Sufficient efficiency conditions associated with a multidimensional multiobjective fractional variational problem. J. Multid. Model. Optim. 1(1), 1–13 (2018)

    Google Scholar 

  20. Treanţă, S.: Robust saddle-point criterion in second-order PDE &PDI constrained control problems. Int. J. Robust Nonlinear Control 31, 9282–9293 (2021)

    Article  Google Scholar 

  21. Treanţă, S.: On well-posed isoperimetric-type constrained variational control problems. J. Differ. Equ. 298, 480–499 (2021)

    Article  MathSciNet  Google Scholar 

  22. Treanţă, S.: On a new class of vector variational control problems. Numer. Funct. Anal. Optim. 39(14), 1594–1603 (2018)

    Article  MathSciNet  Google Scholar 

  23. Treanţă, S.: Higher-order Hamilton dynamics and Hamilton-Jacobi divergence PDE. Comput. Math. Appl. 75, 547–560 (2018)

    Article  MathSciNet  Google Scholar 

  24. Treanţă, S.: PDE-constrained vector variational problems governed by curvilinear integral functionals. Appl. Anal. Optim. 3(1), 83–101 (2019)

    MathSciNet  MATH  Google Scholar 

  25. Treanţă, S.: KT-geodesic pseudoinvex control problems governed by multiple integrals. J. Nonlinear Convex Anal. 20(1), 73–84 (2019)

    MathSciNet  MATH  Google Scholar 

  26. Treanţă, S.: On controlled variational inequalities involving convex functionals. In: Le Thi H., Le H., Pham Dinh T. (eds) Optimization of Complex Systems: Theory, Models, Algorithms and Applications. WCGO 2019. Advances in Intelligent Systems and Computing, vol. 991, pp. 164–174, Springer, Cham (2020)

  27. Treanţă, S.: Constrained variational problems governed by second-order Lagrangians. Applic. Anal. 99(9), 1467–1484 (2020)

    Article  MathSciNet  Google Scholar 

  28. Udrişte, C., Ţevy, I.: Multi-time Euler-Lagrange-Hamilton theory. WSEAS Trans. Math. 6(6), 701–709 (2007)

    MathSciNet  MATH  Google Scholar 

  29. Urziceanu, S.A.: Necessary optimality conditions in isoperimetric constrained optimal control problems. Symmetry 11, 1380 (2019)

    Article  Google Scholar 

  30. van Brunt, B.: The Calculus of Variations. Springer, Berlin (2004)

    Book  Google Scholar 

  31. Zhang, H., Cui, L., Luo, Y.: Near-optimal control for nonzero-sum differential games of continuous-time nonlinear systems using single-network ADP. IEEE Trans. Cyber. 43(1), 206–216 (2013)

    Article  Google Scholar 

  32. Zhang, H., Ma, T., Huang, G., Wang, Z.: Robust global exponential synchronization of uncertain chaotic delayed neural networks via dual-stage impulsive control. IEEE Trans. Syst. Man Cybern. Part B-Cybern. 40(3), 831–844 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savin Treanţă.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Communicated by Jan Sokolowski.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Treanţă, S. Lagrange-Hamilton Approach in Optimization Problems with Isoperimetric-Type Constraints. J Optim Theory Appl 194, 508–520 (2022). https://doi.org/10.1007/s10957-022-02036-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-022-02036-9

Keywords

Mathematics Subject Classification

Navigation