Skip to main content
Log in

An Invariant-Point Theorem in Banach Space with Applications to Nonconvex Optimization

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

An invariant-point theorem and its equivalent formulation are established in which distance functions are replaced by minimal time functions. It is worth emphasizing here that the class of minimal time functions can be interpreted as a general type of directional distance functions recently used to develop new applications in optimization theory. The obtained results are applied in two directions. First, we derive sufficient conditions for the existence of solutions to optimization-related problems without convexity. As an easy corollary, we get a directional Ekeland variational principle. Second, we propose a new type of global error bounds for inequalities which allows us to simultaneously study nonconvex and convex functions. Several examples and comparison remarks are included as well to explain advantages of our results with existing ones in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ansari, Q.H.: Vectorial form of Ekeland-type variational principle with applications to vector equilibrium problems and fixed point theory. J. Math. Anal. Appl. 334(1), 561–575 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arutyunov, A.V.: Caristi’s condition and existence of a minimum of a lower bounded function in a metric space. Applications to the theory of coincidence points. Proc. Steklov. Inst. Math. 291, 24–37 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arutyunov, A.V., Avakov, E.R., Izmailov, A.F.: Directional regularity and metric regularity. SIAM J. Optim. 18(3), 810–833 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arutyunov, A.V., Avakov, E., Gel’man, B.D., Dmitruk, A., Obukhovskii, V.: Locally covering maps in metric spaces and coincidence points. J. Fixed Point Theory Appl. 5(1), 105–127 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arutyunov, A.V., Izmailov, A.F.: Directional stability theorem and directional metric regularity. Math. Oper. Res. 31(3), 526–543 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Arutyunov, A.V., Gel’man, B.D.: On the structure of the set of coincidence points. Sbornik Math. 206(3), 370–388 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Arutyunov, A.V., Zhukovskiy, E.S., Zhukovskiy, S.E.: On the cardinality of the coincidence set for mappings of metric, normed and partially ordered spaces. Sbornik Math. 209(8), 1107–1130 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Azé, D., Corvellec, J.-N.: On the sensitivity analysis of Hoffman constants for systems of linear inequalities. SIAM J. Optim. 12(4), 913–927 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bao, T.Q., Théra, M.A.: On extended versions of Dancs–Hegedüs–Medvegyev’s fixed point theorem. Optimization 66(6), 875–887 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Belousov, E.G.: On types of Hausdorff discontinuity from above for convex closed mappings. Optimization 49(4), 303–325 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bianchi, M., Kassay, G., Pini, R.: Existence of equilibria via Ekeland’s principle. J. Math. Anal. Appl. 305(2), 502–512 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bishop, E., Phelps, R.R.: The support functionals of a convex set. Proc. Sympos. Pure Math. 7, 27–35 (1962)

    Article  Google Scholar 

  13. Chuong, T.D., Jeyakumar, V.: Robust global error bounds for uncertain linear inequality systems with applications. Linear Algebra Appl. 493, 183–205 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cibulka, R., Durea, M., Panţiruc, M., Strugariu, R.: On the stability of the directional regularity. Set-Valued Var. Anal. 28(2), 209–237 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chelmuş, T., Durea, M., Florea, E.: Directional pareto efficiency: concepts and optimality conditions. J. Optim. Theory Appl. 182(1), 336–365 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Colombo, G., Wolenski, P.R.: The subgradient formula for the minimal time function in the case of constant dynamics in Hilbert space. J. Glob. Optim. 28, 269–282 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dancs, S., Hegedüs, M., Medvegyev, P.: A general ordering and fixed-point principle in complete metric space. Acta Sci. Math. Szeged. 46, 381–388 (1983)

    MathSciNet  MATH  Google Scholar 

  18. Durea, M., Panţiruc, M., Strugariu, R.: Minimal time function with respect to a set of directions: basic properties and applications. Optim. Methods Softw. 31(3), 535–561 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Durea, M., Panţiruc, M., Strugariu, R.: A new of directional regularity for mappings and applications to optimization. SIAM J. Optim. 27(2), 1204–1229 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Eleland, I.: On the variational principle. J. Math. Anal. Appl. 47(2), 324–353 (1974)

    Article  MathSciNet  Google Scholar 

  21. Fabian, M.J., Henrion, R., Kruger, A.Y., Outrata, J.V.: Error bounds: necessary and sufficient conditions. Set-Valued Var. Anal. 18(2), 121–149 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fan, K.: Minimax inequality and applications. In: Shisha, O. (ed.) Inequalities III, pp. 103–113. Academic Press, New York (1972)

    Google Scholar 

  23. Flores-Bazán, F., Gutiérrez, C., Novo, V.: A Brézis–Browder principle on partially ordered spaces and related ordering theorems. J. Math. Anal. Appl. 375(1), 245–260 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gfrerer, H.: On directional metric subregularity and second-order optimality conditions for a class of nonsmooth mathematical programs. SIAM J. Optim. 23(1), 632–665 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ha, T.X.D.: Some variants of the Ekeland variational principle for a set-valued map. J. Optim. Theory Appl. 124(1), 187–206 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hoffman, A.J.: On approximate solutions of systems of linear inequalities. J. Res. Nat. Bur. Stand. 49, 263–265 (1952)

    Article  MathSciNet  Google Scholar 

  27. He, Y., Ng, K.F.: Subdifferentials of a minimum time function in Banach spaces. J. Math. Anal. Appl. 321(2), 896–910 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ioffe, A.D.: Variational Analysis of Regular Mappings: Theory and Applications. Springer Monographs in Mathematics, Springer, Cham (2017)

    Book  MATH  Google Scholar 

  29. Jiang, Y., He, Y.: Subdifferential properties for a class of minimal time functions with moving target sets in normed spaces. Appl. Anal. 91(3), 491–501 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Klatte, D.: Hoffman’s error bound for systems of convex inequalities. In: Fiacco, A.V. (ed.) Mathematical Programming with Data Perturbations, pp. 185–199. Marcel Dekker Publ., Moscow (1998)

    Google Scholar 

  31. Khanh, P.Q., Long, V.S.T.: Invariant-point theorems and existence of solutions to optimization-related problems. J. Glob. Optim. 58(3), 545–564 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, G.: On the asymptotically well behaved functions and global error bound for convex polynomials. SIAM J. Optim. 20(4), 1923–1943 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lin, L.J., Du, W.S.: Ekeland’s variational principle, minimax theorems and existence of nonconvex equilibria in complete metric spaces. J. Math. Anal. Appl. 323(1), 360–370 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Long, V.S.T.: A new notion of error bounds: necessary and sufficient conditions. Optim. Lett. 15(1), 171–188 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mordukhovich, B.S., Nam, N.M.: Limiting subgradients of minimal time functions in Banach spaces. J. Global Optim. 46(4), 615–633 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Muu, L.D., Oettli, W.: Convergence of an adaptive penalty scheme for finding constrained equilibria. Nonlinear Anal. 18(12), 1159–1166 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  37. Nam, N.M., Villalobos, M.C., An, N.T.: Minimal time functions and the smallest intersecting ball problem with unbounded dynamics. J. Optim. Theory Appl. 154(3), 768–791 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Nam, N.M., Zǎlinescu, C.: Variational analysis of directional minimal time functions and applications to location problems. Set-Valued Anal. 21(2), 405–430 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ngai, H.V.: Global error bounds for systems of convex polynomials over polyhedral constraints. SIAM J. Optim. 25(1), 521–539 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ngai, H.V., Théra, M.: Error bounds for convex differentiable inequality systems in Banach spaces. Math. Program. Ser. B 104(2–3), 465–482 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ngai, H.V., Théra, M.: Directional metric regularity of multifunctions. Math. Oper. Res. 40(4), 969–991 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Oettli, W., Théra, M.: Equivalents of Ekeland’s principle. Bull. Austral. Math. Soc. 48(3), 385–392 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  43. Penot, J.-P.: The drop theorem, the petal theorem and Ekeland’s variational principle. Nonlinear Anal. 10(9), 813–822 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  44. Qiu, J.H.: A pre-order principle and set-valued Ekeland variational principle. J. Math. Anal. Appl. 419(2), 904–937 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Shironin, V.M.: On Hausdorff continuity of convex and convex polynomial mappings. In: Belousov, E.G., Bank, B. (eds.) Mathematical Optimization: Questions of Solvability and Stability. Moscow Univeristy Publ., Moscow (1986). (in Russian)

  46. Zǎlinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, Singapore (2002)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the editor and the anonymous referee for their useful comments and valuable suggestions, which helped to improve the paper significantly. This research is funded by Vietnam National University HoChiMinh City (VNU-HCM) under Grant Number T2022-18-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vo Si Trong Long.

Additional information

Communicated by Nguyen Mau Nam.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, V.S.T. An Invariant-Point Theorem in Banach Space with Applications to Nonconvex Optimization. J Optim Theory Appl 194, 440–464 (2022). https://doi.org/10.1007/s10957-022-02033-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-022-02033-y

Keywords

Mathematics Subject Classification

Navigation