Skip to main content
Log in

Shape Optimization of an Imperfect Interface: Steady-State Heat Diffusion

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In the context of a diffusion equation, this work is devoted to a two-phase optimal design problem where the interface, separating the phases, is imperfect, meaning that the solution is discontinuous, while the normal flux is continuous and proportional to the jump of the solution. The shape derivative of an objective function with respect to the interface position is computed by the adjoint method. Numerical experiments are performed with the level set method and an exact remeshing algorithm so that the interface is captured by the mesh at each optimization iteration. Comparisons with a perfect interface are discussed in the setting of optimal design or inverse problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Aboudi, J.: Mechanics of composite materials: a unified micromechanical approach. Studies in Applied Mechanics, vol. 29. Elsevier Scientific Publishing Co., Amsterdam (1991)

  2. Allaire, G.: Shape optimization by the homogenization method. Applied Mathematical Sciences, vol. 146. Springer-Verlag, New York (2002)

  3. Allaire, G.: Conception optimale de structures, volume 58 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer-Verlag, Berlin, With the collaboration of Marc Schoenauer (INRIA) in the writing of Chapter 8 (2007)

  4. Allaire, G., Bogosel, B.: Optimizing supports for additive manufacturing. Struct. Multidiscip. Optim. 58(6), 2493–2515 (2018)

    Article  MathSciNet  Google Scholar 

  5. Allaire, G., Dapogny, C., Delgado, G., Michailidis, G.: Multi-phase structural optimization via a level set method. ESAIM Control Optim. Calc. Var. 20(2), 576–611 (2014)

    Article  MathSciNet  Google Scholar 

  6. Allaire, G., Dapogny, C., Frey, P.: Shape optimization with a level set based mesh evolution method. Comput. Methods Appl. Mech. Engrg. 282, 22–53 (2014)

    Article  MathSciNet  Google Scholar 

  7. Allaire, G., Dapogny, C., Jouve, F.: Shape and topology optimization. In: Bonito, A., Nochetto, R.H. (Eds) Geometric Partial Differential Equations - Part II, volume 22 of Handbook of Numerical Analysis. Elsevier (2021)

  8. Allaire, G., Jakabčin, L.: Taking into account thermal residual stresses in topology optimization of structures built by additive manufacturing. Math. Models Methods Appl. Sci. 28(12), 2313–2366 (2018)

    Article  MathSciNet  Google Scholar 

  9. Allaire, G., Jouve, F., Toader, A.-M.: A level-set method for shape optimization. C. R. Math. Acad. Sci. Paris 334(12), 1125–1130 (2002)

    Article  MathSciNet  Google Scholar 

  10. Allaire, G., Jouve, F., Van Goethem, N.: Damage and fracture evolution in brittle materials by shape optimization methods. J. Comput. Phys. 230(12), 5010–5044 (2011)

    Article  MathSciNet  Google Scholar 

  11. Ambrosio, L., Buttazzo, G.: An optimal design problem with perimeter penalization. Calc. Var. Partial Differ. Equ. 1(1), 55–69 (1993)

    Article  MathSciNet  Google Scholar 

  12. Barlier, C., Bernard, A.: Fabrication additive - Du Prototypage Rapide à l’impression 3D. Dunod, Paris (2016)

  13. Bendsøe, M.P., Sigmund, O.: Theory, methods and applications. In: Topology optimization. Springer-Verlag, Berlin (2003)

  14. Bernardi, C., Pironneau, O.: Sensitivity of Darcy’s law to discontinuities. Chinese Ann. Math. Ser. B 24(2), 205–214 (2003)

  15. Brahim, M.M.: Méthodes d’éléments finis pour le problème de changement de phase en milieux composites. PhD thesis, Bordeaux, (2016)

  16. Bramble, J., King, J.: A finite element method for interface problems in domains with smooth boundaries and interfaces. Adv. Comput. Math. 6(2):109–138 (1997), (1996)

  17. Bui, C., Dapogny, C., Frey, P.: An accurate anisotropic adaptation method for solving the level set advection equation. Internat. J. Numer. Methods Fluids 70(7), 899–922 (2012)

    Article  MathSciNet  Google Scholar 

  18. Céa, J.: Conception optimale ou identification de formes: calcul rapide de la dérivée directionnelle de la fonction coût. RAIRO Modél. Math. Anal. Numér. 20(3), 371–402 (1986)

    Article  MathSciNet  Google Scholar 

  19. Chambolle, A.: A density result in two-dimensional linearized elasticity, and applications. Arch. Ration. Mech. Anal. 167(3), 211–233 (2003)

    Article  MathSciNet  Google Scholar 

  20. Chenais, D.: On the existence of a solution in a domain identification problem. J. Math. Anal. Appl. 52(2), 189–219 (1975)

    Article  MathSciNet  Google Scholar 

  21. Dapogny, C., Dobrzynski, C., Frey, P.: Three-dimensional adaptive domain remeshing, implicit domain meshing, and applications to free and moving boundary problems. J. Comput. Phys. 262, 358–378 (2014)

    Article  MathSciNet  Google Scholar 

  22. Dapogny, C., Lebbe, N., Oudet, E.: Optimization of the shape of regions supporting boundary conditions. Numer. Math. 146(1), 51–104 (2020)

    Article  MathSciNet  Google Scholar 

  23. Delfour, M.C., Zolésio, J.-P.: Shapes and geometries, volume 22 of Advances in Design and Control. Society for Industrial and Applied Mathematics (SIAM). Philadelphia, PA, second edition (2011).

  24. Demengel, F., Demengel, G.: Functional spaces for the theory of elliptic partial differential equations. Universitext. Springer, London; EDP Sciences, Les Ulis, 2012. Translated from the 2007 French original by Reinie Erné

  25. Di Pietro, D.A., Ern, A.: Mathematical aspects of discontinuous Galerkin methods. Mathématiques & Applications (Berlin) [Mathematics& Applications], vol. 69. Springer, Heidelberg (2012)

  26. Dobrzynski, C., Frey, P.: In: Anisotropic delaunay mesh adaptation for unsteady simulations. In: Proceedings of the 17th international Meshing Roundtable, pp. 177–194. Springer (2008)

  27. Dolejší, V., Feistauer, M.: Discontinuous Galerkin method, volume 48 of Springer Series in Computational Mathematics. Springer, Cham (2015). Analysis and applications to compressible flow

  28. Duysinx, P., Van Miegroet, L., Jacobs, T., Fleury, C.: In: Generalized shape optimization using x-fem and level set methods. In: IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials, pp. 23–32. Springer (2006)

  29. Feppon, F.: Shape and topology optimization of multiphysics systems. Paris Saclay (PhD thesis) (2019)

  30. Fremiot, G., Sokolowski, J.: In: Hadamard formula in nonsmooth domains and applications. In: Partial dierential equations on multistructures. Proceedings of the conference, Luminy, France, pp. 99–120. Marcel Dekker, New York (2001)

  31. Gan, M., Wong, C.: Practical support structures for selective laser melting. J. Mater. Process. Technol. 238, 474–484 (2016)

    Article  Google Scholar 

  32. Gibson, I., Rosen, D., Stucker, B.: Additive Manufacturing Technologies. Springer, New York (2015)

    Book  Google Scholar 

  33. Hansbo, A., Hansbo, P.: An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput. Methods Appl. Mech. Eng. 191(47–48), 5537–5552 (2002)

  34. Haslinger, J., Dvořák, J.: Optimum composite material design. RAIRO Modél. Math. Anal. Numér. 29(6), 657–686 (1995)

    Article  MathSciNet  Google Scholar 

  35. Hecht, F.: New development in freefem++. J. Numer. Math. 20(3–4), 251–265 (2012)

    MathSciNet  MATH  Google Scholar 

  36. Henrot, A., Pierre, M.: Variation et optimisation de formes, volume 48 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Berlin, Une analyse géométrique. [A geometric analysis] (2005)

  37. Hettlich, F., Rundell, W.: The determination of a discontinuity in a conductivity from a single boundary measurement. Inverse Probl. 14(1), 67–82 (1998)

    Article  MathSciNet  Google Scholar 

  38. Karchevsky, A.L.: Reconstruction of pressure velocities and boundaries of thin layers in thinly-stratified layers. J. Inverse Ill-Posed Probl. 18(4), 371–388 (2010)

    Article  MathSciNet  Google Scholar 

  39. Lang, S.: Fundamentals of differential geometry. Graduate Texts in Mathematics, vol. 191. Springer-Verlag, New York (1999)

  40. Lene, F., Leguillon, D.: Study of the influence of slip between the constituents of a composite material on its effective behavior coefficients. J. de Mecanique 20(3), 509–536 (1981)

    MathSciNet  Google Scholar 

  41. Leugering, G., Sokołowski, J., Żochowski, A.: Control of crack propagation by shape-topological optimization. Discrete Contin. Dyn. Syst. 35(6), 2625–2657 (2015)

    Article  MathSciNet  Google Scholar 

  42. Lipton, R.: Optimal fiber configurations for maximum torsional rigidity. Arch. Ration. Mech. Anal. 144(1), 79–106 (1998)

    Article  MathSciNet  Google Scholar 

  43. Lipton, R.: Reinforcement of elastic structures in the presence of imperfect bonding. Quart. Appl. Math. 59(2), 353–364 (2001)

    Article  MathSciNet  Google Scholar 

  44. Marck, G., Privat, Y.: On some shape and topology optimization problems in conductive and convective heat transfers (2014)

  45. Nocedal, J., Wright, S.J.: Numerical optimization, 2nd edn. Springer Series in Operations Research and Financial Engineering. Springer, New York (2006)

  46. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MathSciNet  Google Scholar 

  47. Pantz, O.: Sensibilité de lÃéquation de la chaleur aux sauts de conductivité. C. R. Math. Acad. Sci. Paris 341(5), 333–337 (2005)

  48. Pietrak, K., Wiśniewski, T.S.: A review of models for effective thermal conductivity of composite materials. J. Power Technol. 95(1), 14–24 (2014)

    Google Scholar 

  49. Tartar, L.: The general theory of homogenization, volume 7 of Lecture Notes of the Unione Matematica Italiana. Springer-Verlag, Berlin; UMI, Bologna, 2009. A personalized introduction

  50. Vermaak, N., Michailidis, G., Parry, G., Estevez, R., Allaire, G., Bréchet, Y.: Material interface effects on the topology optimization of multi-phase structures using a level set method. Struct. Multidiscip. Optim. 50(4), 623–644 (2014)

    Article  MathSciNet  Google Scholar 

  51. Yin, L., Ananthasuresh, G.: Topology optimization of compliant mechanisms with multiple materials using a peak function material interpolation scheme. Struct. Multidiscip. Optim. 23(1), 49–62 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank M. Boissier, A. Ferrer and F. Feppon for their useful comments and fruitful discussion. This work was supported by the SOFIA project and funded by BPI (Banque Publique d’Investissement).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matías Godoy.

Additional information

Communicated by Yannick Privat.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allaire, G., Bogosel, B. & Godoy, M. Shape Optimization of an Imperfect Interface: Steady-State Heat Diffusion. J Optim Theory Appl 191, 169–201 (2021). https://doi.org/10.1007/s10957-021-01928-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-021-01928-6

Keywords

Navigation