Skip to main content
Log in

An Intersection Theorem for Topological Vector Spaces and Applications

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We extend, to the framework of topological vector spaces, two results by Horvath and Kuratowski related to conditions for a family of closed sets to have compact and nonempty intersection. This extension enables us to introduce a number of applications such as the existence of maximal elements in preordered spaces, issues related to KKM functions, fixed point theorems, a variant of a matching theorem by Fan, and mainly the improvement of some minimax and variational inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal, R., Balaj, M., Oregan, D.: Common fixed point theorems in topological vector space via intersection theorems. J. Optim. Theory Appl. 173(2), 443–458 (2017)

    Article  MathSciNet  Google Scholar 

  2. Agarwal, R., Balaj, M., O’Regan, D.: Intersection theorems with applications in optimization. J. Optim. Theory Appl. 179(3), 761–777 (2018)

  3. Aliprantis, C., Border, K.: Infinite Dimensional Analysis. A Hitchhiker’s Guide. Springer, Berlin (2006)

  4. Aussel, D., Sultana, A.: Quasi-variational inequality problems with non-compact valued constraint maps. J. Math. Anal. Appl. 456(2), 1482–1494 (2017)

    Article  MathSciNet  Google Scholar 

  5. Balaj, M.: Three types of variational relation problems. Taiwanese J. Math. 17(1), 47–61 (2013)

    Article  MathSciNet  Google Scholar 

  6. Balaj, M.: Intersection theorems with applications in set-valued equilibrium problems and minimax theory. Optimization 67(10), 281–291 (2018)

    Article  Google Scholar 

  7. Balaj, M.: Intersection theorems with applications in set-valued equilibrium problems and minimax theory. Carpath. J. Math. 35(3), 281–291 (2019)

    Article  MathSciNet  Google Scholar 

  8. Bogachev, V., Smolyanov, O.: Topological Vector Spaces and Their Applications. Springer, Berlin (2017)

    Book  Google Scholar 

  9. Chang, S., Zhang, Y.: Generalized KKM theorem and variational inequalities. J. Math. Anal. Appl. 159(1), 208–223 (1991)

    Article  MathSciNet  Google Scholar 

  10. Dugundji, J., Granas, A.: Fixed point theorems for multivalued nonexpansive mappings satisfying inwardness condition. Annali della Scuola Normale Superiore di Pisa 5(1), 679–682 (1978)

    Google Scholar 

  11. Edwards, R.: Functional Analysis, Theory and Applications. Holt, Rinehart and Winston Inc, Chicago (1965)

    MATH  Google Scholar 

  12. Fan, K.: Fixed-point and minimax theorems in locally convex topological linear spaces. Proc. Natl. Acad. Sci. USA 38(2), 121–126 (1952)

    Article  MathSciNet  Google Scholar 

  13. Fan, K.: Minimax theorems. Proc. Natl. Acad. Sci. USA 39(1), 42–47 (1953)

    Article  MathSciNet  Google Scholar 

  14. Fan, K.: A generalization of Tychonoff’s fixed point theorem. Mathematische Annalen 142(3), 305–310 (1961)

  15. Fan, K.: A minimax inequality and applications. In: Shisha, O. (ed.) Inequalities III, pp. 103–113. Academic Press, New York (1972)

    Google Scholar 

  16. Fan, K.: Some properties of convex sets related to fixed point theorems. Mathematische Annalen 266(1), 519–537 (1984)

    Article  MathSciNet  Google Scholar 

  17. Granas, A., Dugundji, J.: Fixed Point Theory. Springer, New York (2003)

    Book  Google Scholar 

  18. Horvath, C.: Measure of non-compactness and multivalued mappings in complete metric topological vector spaces. J. Math. Anal. Appl. 108(2), 403–408 (1985)

    Article  MathSciNet  Google Scholar 

  19. Kuratowski, C.: Sur les espaces complets. Fundamenta Mathematicae 15, 301–309 (1930)

    Article  Google Scholar 

  20. Luc, D.: An abstract problem in variational analysis. J. Optim. Theory Appl. 138(65), 65–76 (2008)

    Article  MathSciNet  Google Scholar 

  21. Mizoguchi, N.: A generalization of Brøndsted’s results and its applications. Proc. Am. Math. Soc. 108(3), 707–714 (1990)

  22. Saint-Raymond, J.: Topologie sur l’ensemble des compacts non vides d’un espace topologique séparé. Séminaire Choquet Tome 9 (2, exp No. 21), 1–6 (1969/70)

  23. Smart, O.: Fixed Point Theorems. Cambridge University Press, London (1974)

    MATH  Google Scholar 

Download references

Acknowledgements

This research was partially supported by FONDECYT Project 1200525.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl Fierro.

Additional information

Communicated by Sergey Zhukovskiy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fierro, R. An Intersection Theorem for Topological Vector Spaces and Applications. J Optim Theory Appl 191, 118–133 (2021). https://doi.org/10.1007/s10957-021-01927-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-021-01927-7

Keywords

Mathematics Subject Classification

Navigation