Skip to main content
Log in

Global Controllability for Quasilinear Nonnegative Definite System of ODEs and SDEs

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript


We consider exact and averaged control problem for a system of quasilinear ODEs and SDEs with a nonnegative definite symmetric matrix of the system. The strategy of the proof is the standard linearization of the system by fixing the function appearing in the nonlinear part of the system and then applying the Leray–Schauder fixed point theorem. We shall also need the continuous induction arguments to prolong the control to the final state which is a novel approach in the field. This enables us to obtain controllability for arbitrarily large initial data (so-called global controllability).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others


  1. Babiarz, A., Klamka, J., Niezabitowski, M.: Schauder’s fixed-point theorem in approximate controllability problems. Int. J. Appl. Math. Comput. Sci. 26, 263–275 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balachanfran, K., Sakthivel, R., Marshal Anthoni, S.: Controllability of quasilinear integrodifferential systems in Banach spaces. Nihonkai Math. J. 12, 1–9 (2001)

    MathSciNet  MATH  Google Scholar 

  3. Bismut, J.M.: Conjugate convex functions in optimal stochastic control. J. Math. Anal. Appl. 44, 384–404 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cho, H., Udwadia, F.E.: Explicit solution to the full nonlinear problem for satellite formation-keeping. Acta Astronautica 67, 369–387 (2010)

    Article  Google Scholar 

  5. Djordjević, J., Janković, S.: Backward stochastic Volterra integral equations with additive perturbations. Appl. Math. Comput. 265, 903–910 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Djordjević, J., Janković, S.: Reflected backward stochastic differential equations with perturbations. Discrete Contin. Dyn. Syst. - A 38(4), 1833–1848 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gashi, B.: Stochastic minimum-energy control. Syst. Control Lett. 85, 70–76 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gess, B.: Finite speed of propagation for stochastic porous media equations. SIAM J. Math. Anal. 45, 2734–2766 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  10. Hörmander, L.: Lectures on Nonlinear Hyperbolic Differential Equations, Mathematiques and Applications 26. Springer, Berlin (1996)

    Google Scholar 

  11. Janković, S., Jovanović, M., Djordjević, J.: Perturbed backward stochastic differential equations. Math. Comput. Model. 55, 1734–1745 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lazar, M., Zuazua, E.: Averaged control and observation of parameter-depending wave equations. C. R. Acad. Sci. Paris, Ser. I 352, 497–502 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lions, J.L.: Contrôlabilité Exacte, Stabilisation et Perturbations de Systémes Distribués. Tome 1. Contrôlabilité Exacte, Masson, Paris, RMA 8 (1998)

  14. Liu, X., Zhang, X.: Local controllability of multidimensional quasi-linear parabolic equations. SIAM J. Control Optim. 50, 2046–2064 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lohéac, J., Zuazua, E.: From averaged to simultaneous controllability of parameter dependent finite-dimensional systems. Ann. de la Faculté des Sci. de Toulouse Mathématiques (6) 25, 785–828 (2016)

    MATH  Google Scholar 

  16. Lazar, M., Zuazua, E.: Greedy controllability of finite dimensional linear systems. Automatica J. IFAC 74, 327–340 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ma, J., Zhang, J.: Representation theorems for backward stochastic differential equations. Ann. Appl. Probab. 12, 1390–1418 (2002)

    MathSciNet  MATH  Google Scholar 

  18. Mao, X.: Adapted solutions of backward stochastic differential equations with non-Lipschitz coefficients. Stoch. Process. Appl. 58, 281–292 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Micu, S., Zuazua, E.: An introduction to the controllability of linear PDE, Contrôle non linéaire et applications, Sari, T., ed., Collection Travaux en Cours Hermann, 67-150 (2005)

  20. Naito, K.: Controllability of semilinear control systems dominated by the linear part. SIAM J. Control Optim. 25, 715–722 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  21. Naito, K.: On controllability for a nonlinear Volterra equation. Nonlin. Anal. TMA 18, 99–108 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Naito, K., Park, J.Y.: Approximate controllability for trajectories of a delay Volterra control system. J.Optim.Th.App. 61, 271–279 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pardoux, E., Peng, S.G.: Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14(1), 55–61 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  24. Da Prato, G., Röckner, M., Barbu, V.: Stochastic Porous Media Equations. Springer, Berlin (2016)

    MATH  Google Scholar 

  25. Pablo, A., Quirós, F., Rodriguez, A., Vazquez, J.L.: A fractional porous medium equation. Adv. Math. 226, 1378–1409 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Remsing, C.C.: Linear control, Lecture Notes, Rhodes University, Grahamstown 6140, South Africa (2010)

  27. Udwadia, F.E., Kalaba, R.E.: A new perspective on constrained motion. Proc. Royal Soc. Lond., Series A 439, 407–410 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  28. Udwadia, F.E.: Optimal tracking control of nonlinear dynamical systems. Proc. Royal Soc. Lond., Series A 464, 2341–2363 (2008)

    MathSciNet  MATH  Google Scholar 

  29. Zhang, X.: Remarks on the controllability of some quasilinear equations. Some problems of Nonlinear Hyperbolic Equations and Applications, 437–452 (2010)

  30. Zuazua, E.: Controllability and Observability of Partial Differential Equations: Some results and open problems. Handbook of Differential Evolutionary Equations, vol. 3, pp. 527–621, North-Holland (2007)

  31. Zuazua, E.: Averaged control. Automatica 50, 3077–3087 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Vasquez, J.L.: The Porous Medium Equation: Mathematical Theory. Clarendon Press, UK (2006)

    Book  Google Scholar 

  33. Wang, Y., Yang, D., Yong, J., Yu, Z.: Exact controllability of linear stochastic differential equations and related problems. Math. Control Related Fields 7, 305–345 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, Y., Zhang, C.: The norm optimal control problem for stochastic linear control systems. ESAIM Control Optim. Calc. Var. 21, 399–413 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references


This work is partially supported by Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant No. 451-03-9/2021-14/200125). It is also supported by the Lise Meitner Project Number M 2669-N32 of the Austrian Science Fund (FWF) and by the Croatian Science Foundation under Project MiTPDE (number IP-2018-01-2449). This article is based upon work from COST Action CA15225 FRACTIONAL and CA15125 DENORMS supported by COST (European Cooperation in Science and Technology). The permanent address of D.M. is University of Montenegro, Montenegro.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Andrej Novak.

Additional information

Communicated by Firdaus E. Udwadia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djordjevic, J., Konjik, S., Mitrović, D. et al. Global Controllability for Quasilinear Nonnegative Definite System of ODEs and SDEs. J Optim Theory Appl 190, 316–338 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Mathematics Subject Classification