Skip to main content
Log in

Optimality Conditions and Exact Penalty for Mathematical Programs with Switching Constraints

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we give an overview on optimality conditions and exact penalization for the mathematical program with switching constraints (MPSC). MPSC is a new class of optimization problems with important applications. It is well known that if MPSC is treated as a standard nonlinear program, some of the usual constraint qualifications may fail. To deal with this issue, one could reformulate it as a mathematical program with disjunctive constraints (MPDC). In this paper, we first survey recent results on constraint qualifications and optimality conditions for MPDC, then apply them to MPSC. Moreover, we provide two types of sufficient conditions for the local error bound and exact penalty results for MPSC. One comes from the directional quasi-normality for MPDC, and the other is obtained via the local decomposition approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Achtziger, W., Kanzow, C.: Mathematical programs with vanishing constraints: optimality conditions and constraint qualifications. Math. Program. 114, 69–99 (2008)

    Article  MathSciNet  Google Scholar 

  2. Anderani, R., Haeser, G., Schuverdt, M.L., Silva, P.J.S.: A relaxed constant positive linear dependence constraint qualification and applications. Math. Program. 135, 255–273 (2012)

    Article  MathSciNet  Google Scholar 

  3. Anderani, R., Haeser, G., Schuverdt, M.L., Silva, P.J.S.: Two new weak constraint qualifications and applications. SIAM J. Optim. 22, 1109–1135 (2012)

    Article  MathSciNet  Google Scholar 

  4. Anderani, R., Haeser, G., Secchin, L.D., Silva, P.J.S.: New sequential optimality conditions for mathematical programs with complementarity constraints and algorithmic consequences. SIAM J. Optim. 29, 3201–3230 (2019)

    Article  MathSciNet  Google Scholar 

  5. Bai, K., Ye, J.J., Zhang, J.: Directional quasi-/pseudo-normality as sufficient conditions for metric subregularity. SIAM J. Optim. 29, 2625–2649 (2019)

    Article  MathSciNet  Google Scholar 

  6. Benko, M., Červinka, M., Hoheisel, T.: Suffcient conditions for metric subregularity of constraint systems with applications to disjunctive and ortho-disjunctive programs. Set-Valued Var. Anal. (2021). https://doi.org/10.1007/s11228-020-00569-7

    Article  Google Scholar 

  7. Benko, M., Gfrerer, H.: On estimating the regular normal cone to constraint systems and stationarity conditions. Optimization 66, 61–92 (2017)

    Article  MathSciNet  Google Scholar 

  8. Benko, M., Gfrerer, H.: New verifiable stationarity concepts for a class of mathematical programs with disjunctive constraints. Optimization 67, 1–23 (2018)

    Article  MathSciNet  Google Scholar 

  9. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley Interscience, New York, 1983; reprinted as vol. 5 of Classics Appl. Math. 5, SIAM, Philadelphia, PA (1990)

  10. Clason, C., Rund, A., Kunisch, K.: Nonconvex penalization of switching control of partial differential equations. Syst. Control Lett. 106, 1–8 (2017)

    Article  MathSciNet  Google Scholar 

  11. Flegel, M.L., Kanzow, C., Outrata, J.V.: Optimality conditions for disjunctive programs with application to mathematical programs with equilibrium constraints. Set-Valued Anal. 15, 139–162 (2007)

    Article  MathSciNet  Google Scholar 

  12. Gfrerer, H.: On directional metric regularity, subregularity and optimality conditions for nonsmooth mathematical programs. Set-Valued Var. Anal. 21, 151–176 (2013)

    Article  MathSciNet  Google Scholar 

  13. Gfrerer, H.: On directional metric subregularity and second-order optimality conditions for a class of nonsmooth mathematical programs. SIAM J. Optim. 23, 632–665 (2013)

    Article  MathSciNet  Google Scholar 

  14. Gfrerer, H.: Optimality conditions for disjunctive programs based on generalized differentiation with application to mathematical programs with equilibrium constraints. SIAM J. Optim. 24, 898–931 (2014)

    Article  MathSciNet  Google Scholar 

  15. Gfrerer, H.: Linearized M-stationarity conditions for general optimization problems. Set-Valued Var. Anal. 27, 819–840 (2019)

    Article  MathSciNet  Google Scholar 

  16. Gfrerer, H., Ye, J.J., Zhou J.C.: Second-order optimality conditions for non-convex set-constrained optimization problems. preprint, arXiv:1911.04076

  17. Ginchev, I., Mordukhovich, B.S.: On directionally dependent subdifferentials. C.R. Bulg. Acad. Sci. 64, 497–508 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Gugat, M.: Optimal switching boundary control of a string to rest in finite time. ZAMM J. Appl. Math. Mech. 88, 283–305 (2008)

    Article  MathSciNet  Google Scholar 

  19. Guo, L., Zhang, J., Lin, G.-H.: New results on constraint qualifications for nonlinear extremum problems and extensions. J. Optim. Theory Appl. 163, 737–754 (2014)

    Article  MathSciNet  Google Scholar 

  20. Hante, F.M., Sager, S.: Relaxation methods for mixed-integer optimal control of partial differential equations. Comput. Optim. Appl. 55, 197–225 (2013)

    Article  MathSciNet  Google Scholar 

  21. Henrion, R., Outrata, J.V.: On calculating the normal cone to a finite union of convex polyhedra. Optimization 57, 57–78 (2008)

    Article  MathSciNet  Google Scholar 

  22. Hoheisel, T., Kanzow, C.: Stationary conditions for mathematical programs with vanishing constraints using weak constraint qualifications. J. Math. Anal. Appl. 337, 292–310 (2008)

    Article  MathSciNet  Google Scholar 

  23. Janin, R.: Direction derivative of the marginal function in nonlinear programming. Math. Program. Stud. 21, 110–126 (1984)

    Article  Google Scholar 

  24. Kanzow, C., Mehlitz, P., Steck, D.: Relaxation schemes for mathematical programmes with switching constraints. Optim. Methods Softw. (2019). https://doi.org/10.1080/10556788.2019.1663425

    Article  Google Scholar 

  25. Kruger, A.Y., Minchenko, L., Outrata, J.V.: On relaxing the Mangasarian–Fromovitz constraint qualication. Positivity 18, 171–189 (2014)

    Article  MathSciNet  Google Scholar 

  26. Li, G., Guo, L.: Mordukhovich stationarity for mathematical programs with switching constraints under weak constraint qualifications. http://www.optimization-online.org/DB$_$HTML/2019/07/7288.html

  27. Luo, Z.-Q., Pang, J.-S., Ralph, D.: Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  28. Mangasarian, O.L., Fromovitz, S.: The Fritz John optimality conditions in the presence of equality and inequality constraints. J. Math. Anal. Appl. 17, 37–47 (1967)

    Article  MathSciNet  Google Scholar 

  29. Mehlitz, P.: Asymptotic stationarity and regularity for nonsmooth optimization problems. J. Nonsmooth Anal. Optim. 1, 6575 (2020)

    Article  Google Scholar 

  30. Mehlitz, P.: On the linear independence constraint qualification in disjunctive programming. Optimization 69, 2241–2277 (2020)

    Article  MathSciNet  Google Scholar 

  31. Mehlitz, P.: Stationarity conditions and constraint qualifications for mathematical programs with switching constraints with appications to either-or-constrainted programming. Math. Program. 181, 149–186 (2020)

    Article  MathSciNet  Google Scholar 

  32. Minchenko, L., Stakhovski, S.: On relaxed constant rank regularity condition in mathematical programming. Optimization 60, 429–440 (2011)

    Article  MathSciNet  Google Scholar 

  33. Outrata, J.V., Kocvara, M., Zowe, J.: Nonsmooth Approach to Optimization problems with Equilibrium Constraints. Kluwer Academic, Dordrecht (1998)

    Book  Google Scholar 

  34. Qi, L., Wei, Z.: On the constant positive linear dependence condition and its application to SQP methods. SIAM J. Optim. 10, 963–981 (2000)

    Article  MathSciNet  Google Scholar 

  35. Ramos, A.: Mathematical programs with equilibrium constraints: a sequential optimality condition, new constraint qualifications and algorithmic consequences. Optim. Methods Softw. 36, 1–37 (2021)

    Article  MathSciNet  Google Scholar 

  36. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer-Verlag, Berlin (1998)

    Book  Google Scholar 

  37. Seidman, T.I.: Optimal control of a diffusion/reaction/switching system. Evolut. Equ. Control Theory. 2, 723–731 (2013)

    Article  MathSciNet  Google Scholar 

  38. Solodov, M.V.: Constraint Qualifications. Wiley Encyclopedia of Operations Research and Management Science. Wiley, Hoboken (2011)

    Google Scholar 

  39. Xu, M., Ye, J.J.: Relaxed constant positive linear dependence constraint qualification for disjunctive programs, preprint

  40. Ye, J.J., Zhou, J.: Verifiable sufficient conditions for the error bound property of second-order cone complementarity problems. Math. Program. 171, 361–395 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane J. Ye.

Additional information

Communicated by Gianni Di Pillo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Y.-C. Liang work was supported in part by NSFC Grant #11801152, #12071133, #11671122. J. J. Ye work was supported by NSERC.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, YC., Ye, J.J. Optimality Conditions and Exact Penalty for Mathematical Programs with Switching Constraints. J Optim Theory Appl 190, 1–31 (2021). https://doi.org/10.1007/s10957-021-01879-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-021-01879-y

Keywords

Mathematics Subject Classification

Navigation