Skip to main content
Log in

Quadratic Maximization of Reachable Values of Affine Systems with Diagonalizable Matrix

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we solve a maximization problem where the objective function is quadratic and convex or concave and the constraints set is the reachable values set of a convergent discrete-time affine system. Moreover, we assume that the matrix defining the system is diagonalizable. The difficulty of the problem lies in the treatment of infinite sequences belonging to the constraint set. Equivalently, the problem requires to solve an infinite number of quadratic programs. Therefore, the main idea is to extract a finite number of them and to guarantee that the resolution of the extracted problems provides the optimal value and a maximizer for the initial problem. The number of quadratic programs to solve has to be the smallest possible. Actually, we construct a family of integers that over-approximate the exact number of quadratic programs to solve using basic ideas of linear algebra. This family of integers is used in the final algorithm. A new computation of an integer of the family within the algorithm ensures a reduction of the number of iterations. The method proposed in the paper is illustrated on small academic examples. Finally, the algorithm is experimented on randomly generated instances of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adjé, A.: Proving properties on PWA systems using copositive and semidefinite programming. In: Bogomolov, S., Martel, M., Prabhakar, P. (eds.) Numerical Software Verification, pp. 15–30. Springer, Cham (2017)

    Chapter  Google Scholar 

  2. Adjé, A., Garoche, P.L., Magron, V.: Property-based polynomial invariant generation using sums-of-squares optimization. In: International Symposium On Static Analysis (SAS), pp. 235–251. Springer, New York (2015)

  3. Saberi, A., Stoorvogel, A., Sannuti, P.: H2 Optimal Control with an Output Regulation Constraint - Discrete-Time Systems, pp. 303–315. Springer, London (2000). https://doi.org/10.1007/978-1-4471-0727-9_9

  4. Kiumarsi, B., Lewis, F.L., Naghibi-Sistani, M., Karimpour, A.: Optimal tracking control of unknown discrete-time linear systems using input-output measured data. IEEE Trans. Cybern. 45(12), 2770–2779 (2015)

    Article  Google Scholar 

  5. Petersen, I.R., McFarlane, D.C., Rotea, M.A.: Optimal guaranteed cost control of discrete-time uncertain linear systems. Int. J. Robust Nonlinear Control 8(8), 649–657 (1998)

    Article  MathSciNet  Google Scholar 

  6. Iwasaki, T.: Robust performance analysis for systems with structured uncertainty. Int. J. Robust Nonlinear Control 6(2), 85–99 (1996)

    Article  MathSciNet  Google Scholar 

  7. Zhang, H., Umenberger, J., Hu, X.: Inverse optimal control for discrete-time finite-horizon linear quadratic regulators. Automatica (2019). https://doi.org/10.1016/j.automatica.2019.108593

    Article  MATH  Google Scholar 

  8. Ahiyevichh, V., Parsegov, S., Shcherbakov, P.: Upper bounds on peaks in discrete-time linear systems. Automatic Remote Control (2018). https://doi.org/10.31857/S000523100002775-6

  9. Balakrishnan, V., Boyd, S.: On computing the worst-case peak gain of linear systems. Syst. Control Lett. 19(4), 265–269 (1992)

    Article  MathSciNet  Google Scholar 

  10. Ghosh, B., Duggirala, P.S.: Robust reachable set: accounting for uncertainties in linear dynamical systems. ACM Trans. Embed. Comput. Syst. (TECS) 18(5s), 1–22 (2019)

    Article  Google Scholar 

  11. Kong, H., Bartocci, E., Henzinger, T.A.: Reachable Set Over-Approximation for Nonlinear Systems using Piecewise Barrier Tubes. In: International Conference on Computer Aided Verification, pp. 449–467. Springer (2018)

  12. Belta, C., Yordanov, B., Gol, E.A.: Formal Methods for Discrete-time Dynamical Systems, vol. 89. Springer, New York (2017)

    Book  Google Scholar 

  13. Wolkowicz, H., Saigal, R., Vandenberghe, L.: Handbook of Semidefinite Programming: Theory, Algorithms, and Applications, vol. 27. Springer, New York (2012)

    MATH  Google Scholar 

  14. Adjé, A.: Optimal analysis of discrete-time affine systems (2018)

  15. Ahmadi, A.A., Günlük, O.: Robust-to-dynamics linear programming. In: Proceedings of the 2015 54th IEEE Conference on Decision and Control (CDC), pp. 5915–5919 (2015). https://doi.org/10.1109/CDC.2015.7403149

  16. Ahmadi, A.A., Günlük, O.: Robust-to-Dynamics Optimization. arXiv preprint arXiv:1805.03682 (2018)

  17. Sun, Z.: Switched Linear Systems: Control and Design. Springer, New York (2006)

    Google Scholar 

  18. Fijalkow, N., Ouaknine, J., Pouly, A., Sousa-Pinto, J., Worrell, J.: On the decidability of reachability in linear time-invariant systems. In: Proceedings of the 22nd ACM International Conference on Hybrid Systems: Computation and Control (HSCC), pp. 77–86 (2019)

  19. Ouaknine, J., Worrell, J.: On the positivity problem for simple linear recurrence sequences. In: International Colloquium on Automata, Languages, and Programming (ICALP), pp. 318–329. Springer, New York (2014)

  20. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  21. Furini, F., Traversi, E., Belotti, P., Frangioni, A., Gleixner, A., Gould, N., Liberti, L., Lodi, A., Misener, R., Mittelmann, H., et al.: Qplib: a library of quadratic programming instances. Math. Program. Comput. 11(2), 237–265 (2019)

    Article  MathSciNet  Google Scholar 

  22. Floudas, C., Visweswaran, V.: A global optimization algorithm (GOP) for certain classes of nonconvex NLPs–I. Theory. Comput. Chem. Eng. 14(12), 1397–1417 (1990)

    Article  Google Scholar 

  23. Burer, S., Vandenbussche, D.: A finite branch-and-bound algorithm for nonconvex quadratic programming via semidefinite relaxations. Math. Program. 113(2), 259–282 (2008)

    Article  MathSciNet  Google Scholar 

  24. Absil, P.A., Tits, A.L.: Newton-KKT interior-point methods for indefinite quadratic programming. Comput. Optim. Appl. 36(1), 5–41 (2007)

    Article  MathSciNet  Google Scholar 

  25. Huyer, W., Neumaier, A.: MINQ8: general definite and bound constrained indefinite quadratic programming. Comput. Optim. Appl. 69(2), 351–381 (2018)

    Article  MathSciNet  Google Scholar 

  26. Zhang, S.: Quadratic maximization and semidefinite relaxation. Math. Program. 87(3), 453–465 (2000)

    Article  MathSciNet  Google Scholar 

  27. Kim, S., Kojima, M.: Exact solutions of some nonconvex quadratic optimization problems via SDP and SOCP relaxations. Comput. Optim. Appl. 26(2), 143–154 (2003)

    Article  MathSciNet  Google Scholar 

  28. Burer, S., Ye, Y.: Exact semidefinite formulations for a class of (random and non-random) nonconvex quadratic programs. Math. Program. pp. 1–17 (2019)

  29. Vanderbei, R.J.: LOQO: an interior-point code for quadratic programming. Optim. Methods Softw. 11(1–4), 451–484 (1999)

    Article  MathSciNet  Google Scholar 

  30. Friedlander, M.P., Orban, D.: A primal-dual regularized interior-point method for convex quadratic programs. Math. Program. Comput. 4(1), 71–107 (2012)

    Article  MathSciNet  Google Scholar 

  31. Tian, D.G.: An exterior point polynomial-time algorithm for convex quadratic programming. Comput. Optim. Appl. 61, 51–78 (2015)

    Article  MathSciNet  Google Scholar 

  32. Curtis, F.E., Han, Z., Robinson, D.P.: A globally convergent primal-dual active-set framework for large-scale convex quadratic optimization. Comput. Optim. Appl. 60(2), 311–341 (2015)

    Article  MathSciNet  Google Scholar 

  33. Forsgren, A., Gill, P.E., Wong, E.: Primal and dual active-set methods for convex quadratic programming. Math. Program. 159(1–2), 469–508 (2016)

    Article  MathSciNet  Google Scholar 

  34. Tuy, H.: Nonconvex Quadratic Programming, pp. 337–390. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31484-6_10

    Book  Google Scholar 

  35. Konno, H.: Maximization of a convex quadratic function under linear constraints. Math. Program. 11(1), 117–127 (1976)

    Article  MathSciNet  Google Scholar 

  36. Floudas, C..A., Visweswaran, V.: Quadratic Optimization, pp. 217–269. Springer, Boston (1995). https://doi.org/10.1007/978-1-4615-2025-2_5

    Book  MATH  Google Scholar 

  37. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: a fresh approach to numerical computing. SIAM Rev. 59(1), 65–98 (2017). https://doi.org/10.1137/141000671

    Article  MathSciNet  MATH  Google Scholar 

  38. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to Milan Korda for his suggestions about the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assalé Adjé.

Additional information

Communicated by Aris Daniilidis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adjé, A. Quadratic Maximization of Reachable Values of Affine Systems with Diagonalizable Matrix. J Optim Theory Appl 189, 136–163 (2021). https://doi.org/10.1007/s10957-021-01825-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-021-01825-y

Keywords

Navigation