Skip to main content
Log in

Diffeomorphic Shape Matching by Operator Splitting in 3D Cardiology Imaging

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We develop an operator splitting approach to solve diffeomorphic matching problems for sequences of surfaces in three-dimensional space. The goal is to smoothly match, at very fast rate, finite sequences of observed 3D-snapshots extracted from movies recording the smooth dynamic deformations of “soft” surfaces. We have implemented our algorithms in a proprietary software installed at The Methodist Hospital (Cardiology) to monitor mitral valve strain through computer analysis of noninvasive patients echocardiographies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dupuis, P., Gernander, U., Miller, M.I.: Variational problems on flows of diffeomorphisms for image matching. Q. Appl. Math. 56(3), 587–600 (1998)

    Article  MathSciNet  Google Scholar 

  2. Trouvé, A.: Diffeomorphism groups and pattern matching in image analysis. Int. J. Comput. Vis. 28(3), 213–221 (1998)

    Article  Google Scholar 

  3. Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 61(2), 139–157 (2005)

    Article  Google Scholar 

  4. Freeman, J.: Combining diffeomorphic matching with image sequence intensity registration. Ph.D. thesis, Department of Mathematics, University of Houston (2014)

  5. Jajoo, A.: Diffeomorphic matching and dynamic deformable shapes. Ph.D. thesis, Department of Mathematics, University of Houston (2011)

  6. Yue, Q.: A second order variational approach for diffeomorphic matching of 3D surfaces. Ph.D. thesis, Department of Mathematics, University of Houston (2013)

  7. Mang, A., Biros, G.: An inexact Newton–Krylov algorithm for constrained diffeomorphic image registration. SIAM J. Imaging Sci. 8(2), 1030–1069 (2015)

    Article  MathSciNet  Google Scholar 

  8. Mang, A., Gholami, A., Biros, G.: Distributed-memory large-deformation diffeomorphic 3D image registration. In: Proceedings of ACM/IEEE Conference on Supercomputing, pp. 842–853 (2016)

  9. Mang, A., Gholami, A., Davatzikos, C., Biros, G.: CLAIRE: a distributed-memory solver for constrained large deformation diffeomorphic image registration. SIAM J. Sci. Comput. 41(5), C548–C584 (2019)

    Article  MathSciNet  Google Scholar 

  10. Cotin, S., Delingette, H., Ayache, N.: Real-time elastic deformations of soft tissues for surgery simulation. IEEE Trans. Visual. Comput. Graph. 5(1), 62–73 (1999)

    Article  Google Scholar 

  11. Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971)

    Book  Google Scholar 

  12. Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints. Springer, Berlin (2009)

    MATH  Google Scholar 

  13. Glowinski, R., Lions, J.L., He, J.W.: Exact and Approximate Controllability for Distributed Parameter Systems. Cambridge University Press, Campridge (2008)

    Book  Google Scholar 

  14. Fischer, B., Modersitzki, J.: Ill-posed medicine—an introduction to image registration. Inverse Probl. 24(3), 1–16 (2008)

    Article  MathSciNet  Google Scholar 

  15. Grenander, U., Miller, M.I.: Computational anatomy: an emerging discipline. Q. Appl. Math. 56(4), 617–694 (1998)

    Article  MathSciNet  Google Scholar 

  16. Miller, M.I.: Computational anatomy: shape, growth and atrophy comparison via diffeomorphisms. NeuroImage 23(1), S19–S33 (2004)

    Article  Google Scholar 

  17. Glaunes, J., Trouvé, A., Younes, L.: Diffeomorphic matching of distributions: a new approach for unlabelled point-sets and sub-manifolds matching. Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 2, 712–718 (2004)

    Google Scholar 

  18. Arnold, V.I.: Sur la géométrie différentiell des gropues de Lie de dimension infine et ses applications al’hydrodynamique des fluides parfaits. Annales de l’Institut Fourier 16, 319–361 (1966)

    Article  Google Scholar 

  19. Arnold, V.I.: Les méthods mathématiques de la méchanique classique. MIR, Moscow (1976)

    Google Scholar 

  20. Ebin, D.G., Marsden, J.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. 92(1), 102–163 (1970)

    Article  MathSciNet  Google Scholar 

  21. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. Springer, Berlin (1999)

    Book  Google Scholar 

  22. Trouvé, A.: A infinite dimensional group approach for physics based models in pattern recognition. Tech. rep., Laboratoir d’Analyse Numerique CNRS URA, Universite Paris (1995)

  23. Glaunès, J., Qiu, A., Miller, M.I., Younes, L.: Large deformation diffeomorphic metric curve mapping. Int. J. Comput. Vis. 80(3), 317–336 (2008)

    Article  Google Scholar 

  24. Christensen, G.E.: Deformable shape models for anatomy. Ph.D. thesis, Department of Electrical Engineering, Washington University (1994)

  25. Christensen, G.E., Rabbitt, R.D., Miller, M.I.: Deformable templates using large deformation kinematics. IEEE Trans. Image Process. 5(10), 1435–1447 (1996)

    Article  Google Scholar 

  26. Miller, M.I., Christensen, G.E., Amit, Y., Grenander, U.: Mathematical textbook of deformable neuroanatomies. Proc. Natl. Acad. Sci. 90(24), 11944–11948 (1993)

    Article  Google Scholar 

  27. Joshi, S.: Large deformation diffeomorphisms and Gaussian random fields for statistical characterization of brain sub-manifolds. Ph.D. thesis, Department of Electrical Engineering, Washington University (1998)

  28. Yang, X., Kwitt, R., Niethammer, M.: Fast predictive image registration. In: Proceedings of Deep Learning and Data Labeling for Medical Applications, vol. LNCS 10008, pp. 48–57 (2016)

  29. Yang, X., Kwitt, R., Styner, M., Niethammer, M.: Quicksilver: fast predictive image registration—a deep learning approach. NeuroImage 158, 378–396 (2017)

    Article  Google Scholar 

  30. Krebs, J., Delingette, H., Mailhé, B., Ayache, N., Mansi, T.: Learning a probabilistic model for diffeomorphic registration. IEEE Trans. Med. Imaging 38(9), 2165–2176 (2019)

    Article  Google Scholar 

  31. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(9), 1788–1800 (2019)

    Article  Google Scholar 

  32. Dalca, A.V., Balakrishnan, G., Guttag, J., Sabuncu, M.R.: Unsupervised learning of probabilistic diffeomorphic registration for images and surfaces. Med. Image Anal. 57, 226–236 (2019)

    Article  Google Scholar 

  33. Brunn, M., Himthani, N., Biros, G., Mehl, M., Mang, A.: Fast GPU 3D diffeomorphic image registration. arXiv e-prints (2020). arxiv:2004.08893 (in review)

  34. Brunn, M., Himthani, N., Biros, G., Mehl, M., Mang, A.: Multi-node multi-gpu diffeomorphic image registration for large-scale imaging problems. In: Proceedings of ACM/IEEE Conference on Supercomputing (2020)

  35. Zekry, S.B., Lawrie, G., Little, S., Zoghbi, W., Freeman, J., Jajoo, A., Jain, S., He, J., Martynenko, A., Azencott, R.: Comparitive evaluation of mitral valve strain by deformation tracking in 3D-echocardiography. Cardiovasc. Eng. Technol. 3(4), 402–412 (2012)

    Article  Google Scholar 

  36. Zekry, S.B., Freeman, J., Jajoo, A., He, J., Little, S.H., Lawrie, G.M., Azencott, R., Zoghbi, W.A.: Patient-specific quantitation of mitral valve strain by computer analysis of three-dimensional echocardiography: a pilot study. Circ. Cardiovasc. Imaging 9(1), e003254 (2016)

    Google Scholar 

  37. Zekry, S.B., Jain, S., Alexander, S., Li, Y., Aggarwal, A., Jajoo, A., Little, S., Lawrie, G.M., Azencott, R., Zoghbi, W.: Novel parameters of global and regional mitral annulus geometry before and after mitral valve repair. Eur. Heart J. Cardiovasc. Imaging 17, 447–457 (2016)

    Article  Google Scholar 

  38. Azencott, R., Glowinski, R., He, J., Jajoo, A., Lie, Y.P., Martynenko, A., Hoppe, R.H.W., Benzekry, S., Little, S.H.: Diffeomorphic matching and dynamic deformable surfaces in 3D medical imaging. Comput. Methods Appl. Math. 10(3), 235–274 (2010)

    Article  MathSciNet  Google Scholar 

  39. Azencott, R., Glowinski, R., Ramos, A.M.: A controllability approach to shape identification. Appl. Math. Lett. 21(8), 861–865 (2008)

    Article  MathSciNet  Google Scholar 

  40. O’Donghue, B., Stathopoulos, G., Boyd, S.: A splitting method for optimal control. IEEE Trans. Control Syst. Technol. 21(6), 2432–2442 (2013)

    Article  Google Scholar 

  41. Bauschke, H., Combettes, P.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)

    Book  Google Scholar 

  42. Vendenberghe, L.: Lecture on proximal gradient method. http://www.seas.ucla.edu/~vandenbe/236C/lectures/proxgrad.pdf. Accessed 25 Feb 2018

  43. Glowinski, R., Pan, T.W., Tai, X.C.: Some facts about operator-splitting and alternating direction methods. In: Splitting Methods in Communication, Imaging, Science, and Engineering, pp. 19–94. Springer International Publishing, Berlin (2016)

  44. Glowinski, R., Osher, S., Yin, W. (eds.): Splitting Methods in Communications, Imaging, Science, and Engineering. Springer International Publishing, Berlin (2016)

    MATH  Google Scholar 

  45. Glowinski, R., Leung, S., Qian, J.: Operator-splitting based fast sweeping methods for isotropic wave propagation in a moving floid. SIAM J. Sci. Comput. 38(2), A1195–A1223 (2016)

    Article  Google Scholar 

  46. Bukac, M., Canic, S., Muha, B., Glowinski, R.: An operator splitting approach to the solution of fluid-structure interaction problems in hemodynamics. In: Splitting Methods in Communication, Imaging, Science, and Engineering, pp. 731–772. Springer International Publishing, Berlin (2016)

  47. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  Google Scholar 

  48. Goldfarb, D., Ma, S.: Fast multiple-splitting algorithms for convex optimization. SIAM J. Optim. 22(2), 533–556 (2012)

    Article  MathSciNet  Google Scholar 

  49. Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics. Springer, Berlin (2010)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the National Science Foundation through the grants DMS-1854853, DMS-2009923, and DMS-2012825. The research work of Dr. P. Zhang was supported for 3 years by The Methodist Hospital Research Institute (Cardiology Department). Any opinions, findings, and conclusions or recommendations expressed herein are those of the authors and do not necessarily reflect the views of the NSF. This work was completed in part with resources provided by the Research Computing Data Core at the University of Houston.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Azencott.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Urszula A. Ledzewicz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Mang, A., He, J. et al. Diffeomorphic Shape Matching by Operator Splitting in 3D Cardiology Imaging. J Optim Theory Appl 188, 143–168 (2021). https://doi.org/10.1007/s10957-020-01789-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-020-01789-5

Keywords

Mathematics Subject Classification

Navigation