Skip to main content

Advertisement

Log in

Strength Optimisation of Variable Angle-Tow Composites Through a Laminate-Level Failure Criterion

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The development of additive manufacturing techniques for composite structures brought the emergence of a new class of composite materials: the variable angle-tow composites. Additive manufacturing of reinforced polymers allows the tow to be placed along a curvilinear path in each lamina. Accordingly, optimised solutions with enhanced properties can be manufactured. In this work, the multi-scale two-level optimisation strategy for composites is exploited to optimise the strength of variable angle-tow composites subject to mechanical and manufacturing constraints. At the first step of the strategy, the laminate strength is described through a laminate-level failure criterion based on tensor invariants and on the first-order shear deformation theory. The lay-up design phase makes use of quasi-trivial solutions and integrates a check on the first-ply failure in order to ensure the integrity of the whole laminate. The effectiveness of the strategy as well as of the proposed failure criterion is proven on some meaningful test cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hyer, M., Lee, H.: The use of curvilinear fiber format to improve buckling resistance of composite plates with central circular holes. Compos. Struct. 18, 239–261 (1991)

    Article  Google Scholar 

  2. Gurdal, Z., Tatting, B., Wu, K.: Variable stiffness panels: effects of stiffness variation on the in-plane and buckling responses. Compos Part A: Appl Sci Manuf 39(9), 11–22 (2008)

    Google Scholar 

  3. Montemurro, M., Catapano, A.: Variational Analysis and Aerospace Engineering, vol. 116, chap. A new paradigm for the optimum design of variable angle tow laminates, variational analysis and aerospace engineering, pp. 375–400. Springer, New York (2016)

  4. Montemurro, M., Catapano, A.: On the effective integration of manufacturability constraints within the multi-scale methodology for designing variable angle-tow laminates. Compos. Struct. 161, 145–159 (2017)

    Article  Google Scholar 

  5. Montemurro, M., Catapano, A.: A general B-Spline surfaces theoretical framework for optimisation of variable angle-tow laminates. Compos. Struct. 209, 561–578 (2019)

    Article  Google Scholar 

  6. Verchery, G.: Les invariants des tenseurs d’ordre 4 du type de l’élasticité. In: Proceeding of the Euromech Colloquium, vol. 115, pp. 93–104. Villard-de-Lans, France (1979)

  7. Montemurro, M.: An extension of the polar method to the first-order shear deformation theory of laminates. Compos. Struct. 127, 328–339 (2015)

    Article  Google Scholar 

  8. Montemurro, M.: Corrigendum to “An extension of the polar method to the First-order Shear Deformation Theory of laminates” [Compos. Struct. 127 (2015) 328–339]. Composite Structures 131, 1143–1144 (2015)

  9. Catapano, A., Montemurro, M., Balcou, J., Panettieri, E.: Rapid prototyping of variable angle-tow composites. Aerotecnica Missili & Spazio 98(4), 257–271 (2019)

    Article  Google Scholar 

  10. Adali, S., Summers, E., Verijenko, V.: Optimisation of laminated cylindrical pressure vessels under strength criterion. Compos. Struct. 25, 305–312 (1993)

    Article  Google Scholar 

  11. Adali, S., Richter, A., Verijenko, V.: Optimization of shear-deformable laminated plates under buckling and strength criteria. Compos. Struct. 39, 167–178 (1997)

    Article  Google Scholar 

  12. Kathiravan, R., Ganguli, R.: Strength design of composite beam using gradient and particle swarm optimization. Compos. Struct. 81, 471–479 (2007)

    Article  Google Scholar 

  13. Kere, P., Lyly, M., Koski, J.: Using multicriterion optimization for strength design of composite laminates. Compos. Struct. 62, 329–333 (2003)

    Article  Google Scholar 

  14. Nam, H., Hwang, W., Han, K.: Stacking sequence design of fiber-metal laminate for maximum strength. J. Compos. Mater. 35(18), 1654–1683 (2001)

    Article  Google Scholar 

  15. Peng, W., Chen, J., Wei, J., Tu, W.: Optimal strength design for fiber-metal laminates and fiber-reinforced plastic laminates. J. Compos. Mater. 45(2), 237–254 (2011)

    Article  Google Scholar 

  16. Susuki, I.: Strength optimization of multidirectional laminates in an in-plane combined stress state. Mater. Sci. Eng., A 143, 175–185 (1991)

    Article  Google Scholar 

  17. De Buhan, P., Taliercio, A.: A homogenisation approach to the yield strength of composite materials. Eur. J. Mech. A/Solids 10(2), 129–154 (1991)

    MATH  Google Scholar 

  18. Palantera, M., Karjalainen, J., Saarela, O.: Laminate level failure criteria based on FPF analyses. In: Agency, E.S. (ed.) Proceeding European Conference on Spacecraft Structures, Materials and Mechanical Testing, vol. SP-428, pp. 365–370. European Space Agency, Paris (1998)

    Google Scholar 

  19. Catapano, A., Montemurro, M.: On the correlation between stiffness and strength properties of anisotropic laminates. Mech. Adv. Mater. Struct. 26(8), 651–660 (2019)

    Article  Google Scholar 

  20. Catapano, A., Desmorat, B., Vannucci, P.: Stiffness and strength optimization of the anisotropy distribution for laminated structures. J. Optim. Theory Appl. 167(1), 118–146 (2015)

    Article  MathSciNet  Google Scholar 

  21. Pagani, A., Valvano, S., Carrera, E.: Analysis of laminated composites and sandwich structures by variable-kinematic mitc9 plate elements. J. Sandw. Struct. Mater. 20(1), 4–41 (2018)

    Article  Google Scholar 

  22. Carrera, E., Valvano, S., Filippi, M.: Classical, higher-order, zig-zag and variable kinematic shell elements for the analysis of composite multilayered structures. Eur. J. Mech. A. Solids 72, 97–110 (2018)

    Article  MathSciNet  Google Scholar 

  23. Tsai, S., Wu, E.: A general theory of strength for anisotropic materials. J. Compos. Mater. 5, 58–80 (1971)

    Article  Google Scholar 

  24. Catapano, A., Desmorat, B., Vannucci, P.: Invariant formulation of phenomenological failure criteria for orthotropic sheets and optimisation of their strength. Math. Methods Appl. Sci. 35(15), 1842–1858 (2012)

    Article  MathSciNet  Google Scholar 

  25. Zhang, W., Evans, K.: A strain-based tensor polynomial failure criterion for anisotropic materials. J. Strain Anal. Eng. Des. 23, 179–186 (1988)

    Article  Google Scholar 

  26. Reddy, J.N.: Mechanics of Composite Laminated Plates and Shells: Theory and Analysis, 2nd edn. CRC Press, Boca Raton (2003)

    Google Scholar 

  27. Catapano, A.: Stiffness and strength optimisation of the anisotropy distribution for laminated structures. Ph.D. thesis, Université Pierre et Marie Curie, Paris, France (2013)

  28. Montemurro, M.: The polar analysis of the third-order shear deformation theory of laminates. Compos. Struct. 131, 775–789 (2015)

    Article  Google Scholar 

  29. Montemurro, M.: A contribution to the development of design strategies for the optimisation of lightweight structures. Ph.D. thesis, Université de Bordeaux. HDR Thesis (2018)

  30. Miki, M., Sugiyama, Y.: Optimum design of laminated composite plates using lamination parameters. AIAA J 31(5), 921–922 (1993)

    Article  Google Scholar 

  31. Vannucci, P., Verchery, G.: A special class of uncoupled and quasi-homogeneous laminates. Compos. Sci. Technol. 61(10), 1465–1473 (2001)

    Article  Google Scholar 

  32. Garulli, T., Catapano, A., Montemurro, M., Jumel, J., Fanteria, D.: Quasi-trivial stacking sequences for the design of thick laminates. Compos. Struct. 200, 614–623 (2018)

    Article  Google Scholar 

  33. Giunta, G., Catapano, A., Belouettar, S., Vannucci, P., Carrera, E.: Failure analysis of composite plates subjected to localized loadings via a unified formulation. J. Eng. Mech. 138(5), 458–467 (2012)

    Article  Google Scholar 

  34. Giunta, G., Catapano, A., Belouettar, S.: Failure indentation analysis of composite sandwich plates via hierarchical models. J. Sandw. Struct. Mater. 15(1), 45–70 (2013)

    Article  Google Scholar 

  35. Montemurro, M., Vincenti, A., Vannucci, P.: The Authomatic Dynamic Penalisation method (ADP) for handling constraints with genetic algorithms. Comput. Methods Appl. Mech. Eng. 256, 70–87 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

Part of the activities presented in this work has been developed in the framework of the SMARTCOMPOSITE project funded by Nouvelle-Aquitaine region.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Catapano.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Catapano, A., Montemurro, M. Strength Optimisation of Variable Angle-Tow Composites Through a Laminate-Level Failure Criterion. J Optim Theory Appl 187, 683–706 (2020). https://doi.org/10.1007/s10957-020-01750-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-020-01750-6

Keywords

Mathematics Subject Classification

Navigation