Skip to main content
Log in

On Dynamic Programming Principle for Stochastic Control Under Expectation Constraints

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper studies the dynamic programming principle using the measurable selection method for stochastic control of continuous processes. The novelty of this work is to incorporate intermediate expectation constraints on the canonical space at each time t. Motivated by some financial applications, we show that several types of dynamic trading constraints can be reformulated into expectation constraints on paths of controlled state processes. Our results can therefore be employed to recover the dynamic programming principle for these optimal investment problems under dynamic constraints, possibly path-dependent, in a non-Markovian framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. El Karoui, N., Tan, X.: Capacities, measurable selection and dynamic programming part I: abstract framework. arXiv preprint: arXiv:1310.3363 (2013)

  2. El Karoui, N., Tan, X.: Capacities, measurable selection and dynamic programming part II: applications in stochastic control problems. arXiv preprint: arXiv:1310.3364 (2013)

  3. Bouchard, B., Elie, R., Imbert, C.: Optimal control under stochastic target constraints. SIAM J. Control Optim. 48(5), 3501–3531 (2010)

    Article  MathSciNet  Google Scholar 

  4. Bouchard, B., Elie, R., Touzi, N.: Stochastic target problems with controlled loss. SIAM J. Control Optim. 48(5), 3123–3150 (2009)

    Article  MathSciNet  Google Scholar 

  5. Bouchard, B., Nutz, M.: Weak dynamic programming for generalized state constraints. SIAM J. Control Optim. 50(6), 3344–3373 (2012)

    Article  MathSciNet  Google Scholar 

  6. Soner, H.M.: Optimal control with state-space constraint. I. SIAM J. Control Optim. 24(3), 552–561 (1986)

    Article  MathSciNet  Google Scholar 

  7. Soner, H.M.: Optimal control with state-space constraint. II. SIAM J. Control Optim. 24(6), 1110–1122 (1986)

    Article  MathSciNet  Google Scholar 

  8. Soner, H.M., Touzi, N.: Dynamic programming for stochastic target problems and geometric flows. J. Eur. Math. Soc. 4(3), 201–236 (2002)

    Article  MathSciNet  Google Scholar 

  9. Soner, H.M., Touzi, N.: Stochastic target problems, dynamic programming, and viscosity solutions. SIAM J. Control Optim. 41, 404–424 (2002)

    Article  MathSciNet  Google Scholar 

  10. Bayraktar, E., Miller, C.W.: Distribution-constrained optimal stopping. Math. Financ. 29(1), 368–406 (2019)

    Article  MathSciNet  Google Scholar 

  11. Bayraktar, E., Cox, A., Stoev, Y.: Martingale optimal transport with stopping. SIAM J. Control Optim. 56(1), 417–433 (2018)

    Article  MathSciNet  Google Scholar 

  12. Bayraktar, E., Yao, S.: Dynamic programming principles for optimal stopping with expectation constraint. arXiv preprint: arXiv:1708.02192 (2017)

  13. Källblad, S.: A dynamic programming principle for distribution-constrained optimal stopping. arXiv preprint: arXiv:1703.08534 (2017)

  14. Bouchard, B., Touzi, N.: Weak dynamic programming principle for viscosity solutions. SIAM J. Control Optim. 49(3), 948–962 (2011)

    Article  MathSciNet  Google Scholar 

  15. Nutz, M., van Handel, R.: Constructing sublinear expectations on path space. Stoch. Process. Appl. 123(8), 3100–3121 (2013)

    Article  MathSciNet  Google Scholar 

  16. Ishii, H., Koike, S.: A new formulation of state constraint problems for first-order PDEs. SIAM J. Control Optim. 34(2), 554–571 (1996)

    Article  MathSciNet  Google Scholar 

  17. Lasry, J.M., Lions, P.L.: Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints. I. The model problem. Math. Ann. 283(4), 583–630 (1989)

    Article  MathSciNet  Google Scholar 

  18. Katsoulakis, M.A.: Viscosity solutions of second order fully nonlinear elliptic equations with state constraints. Indiana Univ. Math. J. 43(2), 493–519 (1994)

    Article  MathSciNet  Google Scholar 

  19. El Karoui, N., Jeanblanc, M., Lacoste, V.: Optimal portfolio management with American capital guarantee. J. Econ. Dyn. Control 29(3), 449–468 (2005)

    Article  MathSciNet  Google Scholar 

  20. Grossman, S.J., Zhou, Z.: Optimal investment strategies for controlling drawdowns. Math. Financ. 3(3), 241–276 (1993)

    Article  Google Scholar 

  21. Elie, R., Touzi, N.: Optimal lifetime consumption and investment under a drawdown constraint. Finance Stoch. 12(3), 299–330 (2008)

    Article  MathSciNet  Google Scholar 

  22. Föllmer, H., Leukert, P.: Quantile hedging. Finance Stoch. 3(3), 251–273 (1999)

    Article  MathSciNet  Google Scholar 

  23. Föllmer, H., Leukert, P.: Efficient hedging: cost versus shortfall risk. Finance Stoch. 4, 117–146 (2000)

    Article  MathSciNet  Google Scholar 

  24. Pytlak, R., Vinter, R.B.: A feasible directions algorithm for optimal control problems with state and control constraints: convergence analysis. SIAM J. Control Optim. 36(6), 1999–2019 (1998)

    Article  MathSciNet  Google Scholar 

  25. Pytlak, R., Vinter, R.B.: Feasible direction algorithm for optimal control problems with state and control constraints: implementation. J. Optim. Theory Appl. 101, 623–649 (1999)

    Article  MathSciNet  Google Scholar 

  26. Kharroubi, I.: Optimal switching in finite horizon under state constraints. SIAM J. Control Optim. 54(4), 2202–2233 (2016)

    Article  MathSciNet  Google Scholar 

  27. Soner, H., Touzi, N.: A stochastic representation for mean curvature type geometric flows. Ann. Probab. 31(3), 1145–1165 (2003)

    Article  MathSciNet  Google Scholar 

  28. Bokanowski, O., Picarelli, A., Zidani, H.: State-constrained stochastic optimal control problems via reachability approach. SIAM J. Control Optim. 54(5), 2568–2593 (2016)

    Article  MathSciNet  Google Scholar 

  29. Bertsekas, D.P., Shreve, S.E.: Stochastic Optimal Control: The Discrete Time Case. Academic Press, New York (1978)

    MATH  Google Scholar 

  30. Soner, H.M., Touzi, N., Zhang, J.: Wellposedness of second order backward SDEs. Probab. Theory Relat. Fields 153, 149–190 (2012)

    Article  MathSciNet  Google Scholar 

  31. Dellacherie, C., Meyer, P.A.: Probabilities and Potential, vol. 29 of North-Holland Mathematics Studies. North-Holland, Amsterdam (1978)

    Google Scholar 

  32. Bayraktar, E., Sirbu, M.: Stochastic Perron’s method and verification without smoothness using viscosity comparison: the linear case. Proc. Am. Math. Soc. 140(10), 3645–3654 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is partially done when the first author was a Ph.D. student in Hong Kong Baptist University. Yuk-Loong Chow is supported by the Fundamental Research Funds for the Central Universities under the Grant 19lgpy242. Xiang Yu is supported by the Hong Kong Early Career Scheme under Grant No. 25302116. Chao Zhou is supported by Singapore MOE (Ministry of Education’s) AcRF Grant R-146-000-219-112.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Yu.

Additional information

Communicated by Lars Grüne.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chow, YL., Yu, X. & Zhou, C. On Dynamic Programming Principle for Stochastic Control Under Expectation Constraints. J Optim Theory Appl 185, 803–818 (2020). https://doi.org/10.1007/s10957-020-01673-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-020-01673-2

Keywords

Mathematics Subject Classification

Navigation