Skip to main content
Log in

Suboptimal Control for Nonlinear Systems with Disturbance via Integral Sliding Mode Control and Policy Iteration

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we consider a suboptimal control problem for nonlinear systems with unmatched disturbance via integral sliding mode control and policy iteration. Firstly, the unmatched disturbance is estimated by a nonlinear disturbance observer. Secondly, the integral sliding mode controller based on the disturbance estimation is designed to guarantee the reachability of the sliding-mode surface. Furthermore, the policy iteration approach based on actor-critic neural networks is used to design the suboptimal controller, which can achieve the desired performance. Finally, the effectiveness of the proposed approach is demonstrated through simulation examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Edwards, C., Spurgeon, S.: Sliding Mode Control: Theory and Applications. Taylor and Francis, London (1998)

    MATH  Google Scholar 

  2. Lin, C.J.: Dynamic output integral sliding-mode control with disturbance attenuation. IEEE Trans. Autom. Control. 54, 2653–2658 (2009)

    MathSciNet  MATH  Google Scholar 

  3. Li, X., Yu, X., Han, Q.L.: Stability analysis of second-order sliding mode control systems with input-delay using poincar\(\acute{e}\) map. IEEE Trans. Autom. Control. 58, 2410–2415 (2013)

    MATH  Google Scholar 

  4. Zheng, J.H., Shi, P., Xia, Y.Q., Yang, H.J.: Discrete-time sliding mode control with disturbance rejection. IEEE Trans. Ind. Electron. 66, 7967–7975 (2019)

    Google Scholar 

  5. Rubagotti, M., Estrada, A., Castanos, F., Ferrara, A., Fridman, L.: Integral sliding mode control for nonlinear systems with matched and unmatched perturbations. IEEE Trans. Autom. Control 56, 2699–2704 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Xu, J.X., Guo, Z.Q., Lee, T.H.: Design and implementation of integral sliding-mode control on an underactuated two-wheeled mobile robot. IEEE Trans. Ind. Electron. 61, 3671–3681 (2014)

    Google Scholar 

  7. Castanos, F., Hernández, D., Fridman, L.M.: Integral sliding-mode control for linear time-invariant implicit systems. Automatica 50, 971–975 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Yu, S., Long, X.: Finite-time consensus for second-order multi-agent systems with disturbances by integral sliding mode. Automatica 54, 158–165 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Zhou, L., Che, Z., Yang, C.: Disturbance observer-based integral sliding mode control for singularly perturbed systems with mismatched disturbances. IEEE Access 99, 9854–9861 (2018)

    Google Scholar 

  10. Wang, J.H., Xu, Y.L., Xu, Y.: Time-varying formation for high-order multi-agent systems with external disturbances by event-triggered integral sliding mode control. Appl. Math. Comput. 359, 333–343 (2019)

    MathSciNet  MATH  Google Scholar 

  11. Yang, J., Li, S., Yu, X.: Sliding-mode control for systems with mismatched uncertainties via a disturbance observer. IEEE Trans. Ind. Electron. 60, 160–169 (2013)

    Google Scholar 

  12. Ginoya, D., Shendge, P.D., Phadke, S.B.: Sliding mode control for mismatched uncertain systems using an extended disturbance observer. IEEE Trans. Ind. Electron. 61, 1983–1992 (2014)

    Google Scholar 

  13. Ginoya, D., Shendge, P.D., Phadke, S.B.: Disturbance observer based sliding mode control of nonlinear mismatched uncertain systems. Commun. Nonlinear Sci. Numer. Simul. 26, 98–107 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Liu, X., Liu, Z., Shan, J., Sun, H.: Anti-disturbance autopilot design for missile system via finite time integral sliding mode control method and nonlinear disturbance observer technique. Trans. Inst. Meas. Control. 38, 693–700 (2015)

    Google Scholar 

  15. Mohammed, S., Huo, W., Huang, J., Rifaï, H., Amirat, Y.: Nonlinear disturbance observer based sliding mode control of a human-driven knee joint orthosis. Robot. Auton. Syst. 75, 41–49 (2016)

    Google Scholar 

  16. Yin, X.M., Wang, B., Liu, L.: Disturbance observer-based gain adaptation high-order sliding mode control of hypersonic vehicles. Aerosp. Sci. Technol. 89, 19–30 (2019)

    Google Scholar 

  17. Yang, J., Su, J., Li, S., Yu, X.: High-order mismatched disturbance compensation for motion control systems via a continuous dynamic sliding-mode approach. IEEE Trans. Ind. Inform. 10, 604–614 (2014)

    Google Scholar 

  18. Zhang, J., Liu, X., Xia, Y., Zuo, Z., Wang, Y.: Disturbance observer-based integral sliding-mode control for systems with mismatched disturbances. IEEE Trans. Ind. Electron. 63, 7040–7048 (2016)

    Google Scholar 

  19. Guo, J., Liu, Y., Cheng, C., Zhou, J.: Disturbance attenuation-based sliding mode control with disturbance observer for mismatched uncertain system. Adv. Mech. Eng. 9, 1–11 (2017)

    Google Scholar 

  20. Shen, Y., Yu, J., Luo, G., Ai, X., Jia, Z., Chen, F.: Observer-based adaptive sliding mode backstepping output-feedback DSC for spin-stabilized canard-controlled projectiles. Chin. J. Aeronaut. 30, 1115–1126 (2017)

    Google Scholar 

  21. Sun, J., Yi, J., Pu, Z., Tan, X.: Fixed-time sliding mode disturbance observer-based nonsmooth backstepping control for hypersonic vehicles. IEEE Trans. Syst. Man Cybern. Syst. 99, 1–10 (2018)

    Google Scholar 

  22. Chilan, C., Conway, B.: Optimal nonlinear control using Hamilton–Jacobi–Bellman viscosity solutions on unstructured grids. J. Guid. Control Dyn. 43, 30–38 (2020)

    Google Scholar 

  23. Che, J., Santone, M., Cao, C.: Adaptive control for systems with output constraints using an online optimization method. J. Optim. Theory Appl. 165, 480–506 (2015)

    MathSciNet  MATH  Google Scholar 

  24. Khalaf, M.A., Lewis, F.L.: Nearly optimal control laws for nonlinear systems with saturating actuators using a neural network HJB approach. Automatica 41, 779–791 (2005)

    MathSciNet  MATH  Google Scholar 

  25. Vrabie, D., Lewis, F.: Neural network approach to continuous-time direct adaptive optimal control for partially unknown nonlinear systems. Neural Netw. 22, 237–46 (2009)

    MATH  Google Scholar 

  26. Bhatnagar, S., Lakshmanan, K.: An online actor-critic algorithm with function approximation for constrained markov decision processes. J. Optim. Theory Appl. 153, 688–708 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Kiumarsi, B., Lewis, F.L., Jiang, Z.P.: \({H_\infty }\) control of linear discrete-time systems: off-policy reinforcement learning. Automatica 78, 144–152 (2017)

    MathSciNet  MATH  Google Scholar 

  28. Zhang, Z.L., Song, R.Z., Cao, M.: Synchronous optimal control method for nonlinear systems with saturating actuators and unknown dynamics using off-policy integral reinforcement learning. Neurocomputing 356, 162–169 (2019)

    Google Scholar 

  29. Kamalapurkar, R., Dinh, H., Bhasin, S., Dixon, W.E.: Approximate optimal trajectory tracking for continuous-time nonlinear systems. Automatica 51, 40–48 (2015)

    MathSciNet  MATH  Google Scholar 

  30. Malla, N., Ni, Z.: A new history experience replay design for model-free adaptive dynamic programming. Neurocomputing 266, 141–149 (2017)

    Google Scholar 

  31. Bertsekas, D.P.: Value and policy iterations in optimal control and adaptive dynamic programming. IEEE Trans. Neural Netw. Learn. Syst. 28, 500–509 (2017)

    MathSciNet  Google Scholar 

  32. Gnecco, G., Sanguineti, M.: Suboptimal solutions to dynamic optimization problems via approximations of the policy functions. J. Optim. Theory Appl. 146, 764–794 (2010)

    MathSciNet  MATH  Google Scholar 

  33. Vamvoudakis, K.G., Lewis, F.L.: Online actor-critic algorithm to solve the continuous-time infinite horizon optimal control problem. Automatica 46, 878–888 (2010)

    MathSciNet  MATH  Google Scholar 

  34. Cheng, K., Fei, S., Zhang, K., Liu, X., Wei, H.: Temporal difference-based policy iteration for optimal control of stochastic systems. J. Optim. Theory Appl. 163, 165–180 (2013)

    MathSciNet  MATH  Google Scholar 

  35. Prasad, L.B., Gupta, H.O., Tyagi, B.: Application of policy iteration technique based adaptive optimal control design for automatic voltage regulator of power system. Int. J. Electr. Power Energy Syst. 63, 940–949 (2014)

    Google Scholar 

  36. Liu, D., Wei, Q.: Policy iteration adaptive dynamic programming algorithm for discrete-time nonlinear systems. IEEE Trans. Neural Netw. Learn. Syst. 25, 621–34 (2014)

    Google Scholar 

  37. Wang, D., Liu, D.R., Li, H.: Policy iteration algorithm for online design of robust control for a class of continuous-time nonlinear systems. IEEE Trans. Autom. Sci. Eng. 11, 627–632 (2014)

    Google Scholar 

  38. Dutta, S., Patchaikani, P.K., Behera, L.: Near-optimal controller for nonlinear continuous-time systems with unknown dynamics using policy iteration. IEEE Trans. Neural Netw. Learn. Syst. 27, 1537–49 (2016)

    MathSciNet  Google Scholar 

  39. Zhu, Y., Zhao, D., Yang, X., Zhang, Q.: Policy iteration for \({H_\infty }\) optimal control of polynomial nonlinear systems via sum of squares programming. IEEE Trans. Cybern. 48, 500–09 (2018)

    Google Scholar 

  40. Sun, J., Zhu, Z.Q., Li, H.Q.: An integrated critic-actor neural network for reinforcement learning with application of DERs control in grid frequency regulation. Int. J. Electr. Power Energy Syst. 111, 286–299 (2019)

    Google Scholar 

  41. Lewis, F.L., Jagannathan, S.A.: Yesildirek, Neural Network Control of Robot Manipulators and Nonlinear Systems. Taylor and Francis Inc. (1999)

  42. Fan, Q.Y., Yang, G.H.: Adaptive actor-critic design-based integral sliding-mode control for partially unknown nonlinear systems with input disturbances. IEEE Trans. Neural Netw. Learn. Syst. 27, 165–77 (2016)

    MathSciNet  Google Scholar 

  43. Stevens, B.L., Lewis, F.L.: Aircraft Control and Simulation, vol. 3, pp. 397–413. Willey, New Jersey (2015)

    Google Scholar 

  44. Ferhun, Y., Hasan, K.: Decoupled sliding-mode controller based on time-varying sliding surfaces for fourth-order systems. Expert Syst. Appl. 37, 6764–6774 (2010)

    Google Scholar 

  45. Husnu, B., Hasan, K.: Nonsingular decoupled terminal sliding-mode control for a class of fourth-order nonlinear systems. Commun. Nonlinear Sci. Numer. Simul. 18, 2527–2539 (2013)

    MathSciNet  MATH  Google Scholar 

  46. Liu, J.: Sliding Mode Control Using MATLAB. Tsinghua University Press Limited, Elsevier Inc. (2017)

    Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China [Grant Number 61473202]. The authors are grateful for the anonymous referees and the editors for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoshan Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Zhang, G. Suboptimal Control for Nonlinear Systems with Disturbance via Integral Sliding Mode Control and Policy Iteration. J Optim Theory Appl 185, 652–677 (2020). https://doi.org/10.1007/s10957-020-01652-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-020-01652-7

Keywords

Mathematics Subject Classification

Navigation