Skip to main content
Log in

A General Iterative Procedure to Solve Generalized Equations with Differentiable Multifunction

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Taking advantage of recent developments in the theory of generalized differentiation of multifunctions, we present in a unified manner a general iterative procedure for solving generalized equations. This procedure is based on a certain type of approximation of functions called point-based approximation together with a linearization of the multifunctions. Our theorem encompasses the Newton method and extends in the same time, many methods of resolution of generalized equations that have been developed during the last two decades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pang, C.H.J.: Generalized differentiation with positively homogeneous maps: applications in set-valued analysis and metric regularity. Math. Oper. Res. 36(3), 377–397 (2011)

    Article  MathSciNet  Google Scholar 

  2. Dontchev, A.L.: Local convergence of the Newton method for generalized equations. C. R. Acad. Sci. Paris Sér. I Math. 322(4), 327–331 (1996)

    MathSciNet  MATH  Google Scholar 

  3. Geoffroy, M.H., Piétrus, A.: Local convergence of some iterative methods for generalized equations. J. Math. Anal. Appl. 290(2), 497–505 (2004)

    Article  MathSciNet  Google Scholar 

  4. Geoffroy, M.H., Pietrus, A.: A general iterative procedure for solving nonsmooth generalized equations. Comput. Optim. Appl. 31(1), 57–67 (2005)

    Article  MathSciNet  Google Scholar 

  5. Gaydu, M., Geoffroy, M.H.: A Newton iteration for differentiable set-valued maps. J. Math. Anal. Appl. 399(1), 213–224 (2013)

    Article  MathSciNet  Google Scholar 

  6. Ioffe, A.D.: Nonsmooth analysis: differential calculus of nondifferentiable mappings. Trans. Am. Math. Soc. 266(1), 1–56 (1981)

    Article  MathSciNet  Google Scholar 

  7. Kummer, B.: Approximation of multifunctions and superlinear convergence. Recent Developments in Optimization. Lecture Notes in Economics and Mathematical Systems 429, 243–251 (1995)

  8. Azé, D., Chou, C.C.: On the Newton type iterative method for solving inclusions. Math. Oper. Res. 20(4), 790–800 (1995)

    Article  MathSciNet  Google Scholar 

  9. Dias, S., Smirnov, G.: On the Newton for set-valued maps. Nonlinear Anal. TMA 75(3), 1219–1230 (2012)

    Article  MathSciNet  Google Scholar 

  10. Klatte, D., Kummer, B.: Approximations and generalized Newton methods. Math. Program 168(1–2), 673–716 (2018)

    Article  MathSciNet  Google Scholar 

  11. Adly, S., Ngai, H.V., Nguyen, V.V.: Stability of metric regularity with set-valued perturbations and application to Newton’s method for solving generalized equations. Set-Valued Var. Anal. 25, 543–567 (2017)

    Article  MathSciNet  Google Scholar 

  12. Adly, S., Cibulka, R., Nguyen, V.V.: Newton’s method for solving inclusions using set-valued approximations. SIAM J. Optim. 25(1), 159–184 (2015)

    Article  MathSciNet  Google Scholar 

  13. Dontchev, A.L., Rockafellar, R.T.: Newton’s method for generalized equations: a sequential implicit function theorem. Math. Program 123(1), 139–150 (2010)

    Article  MathSciNet  Google Scholar 

  14. Aragón Artacho, F.J., Dontchev, A.L., Gaydu, M., Geoffroy, M.H., Veliov, V.M.: Metric regularity of Newton’s iteration. SIAM J. Control Optim. 53(2), 1003–1019 (2015)

    Article  MathSciNet  Google Scholar 

  15. Aragón Artacho, F.J., Belyakov, M., Dontchev, A.L., Lopez, M.: Local convergence of quasi-Newton methods under metric regularity. Comput. Optim. Appl. 58, 225–247 (2014)

    Article  MathSciNet  Google Scholar 

  16. Cibulka, R., Dontchev, A.L., Geoffroy, M.H.: Inexact Newton methods and Dennis–Moré theorems for nonsmooth generalized equations. SIAM J. Control. Optim. 49(2), 339–362 (2011)

    Article  MathSciNet  Google Scholar 

  17. Aubin, J.P., Frankowska, H.: Set-valued analysis, Systems & Control: Foundations & Applications, vol. 2. Birkhäuser Boston Inc, Boston, MA (1990)

    MATH  Google Scholar 

  18. Gaydu, M., Geoffroy, M.H., Jean-Alexis, C.: An inverse mapping theorem for \(H\)-differentiable set-valued maps. J. Math. Anal. Appl. 421(1), 298–313 (2015)

    Article  MathSciNet  Google Scholar 

  19. Pang, C.H.J.: Implicit multifunction theorems with positively homogeneous maps. Nonlinear Anal. 75(3), 1348–1361 (2012)

    Article  MathSciNet  Google Scholar 

  20. Gaydu, M., Geoffroy, M.H., Marcelin, Y.: Prederivatives of convex set-valued maps and applications to set optimization problems. J. Global Optim. 64(1), 141–158 (2016)

    Article  MathSciNet  Google Scholar 

  21. Rockafellar, R.T., Wets, R.J.B.: Variational analysis, Grundlehren der Mathematischen Wissenschaften, 317. Springer, Berlin (1998)

    Google Scholar 

  22. Nachi, K., Penot, J.-P.: Inversion of multifunction and differential inclusions. Control Cybern. 34(3), 871–901 (2005)

    MathSciNet  MATH  Google Scholar 

  23. Mordukhovich, B.S.: Variational analysis and generalized differentiation. I. Basic theory, Grundlehren der Mathematischen Wissenschaften, 330. Springer, Berlin (2006)

  24. Dontchev, A.L., Rockafellar, R.T.: Implicit functions and solution mappings. A view from variational analysis. Springer Monographs in Mathematics. Springer, Dordrecht (2009)

    Book  Google Scholar 

  25. Khan, A.A., Tammer, C., Zalinescu, C.: Set-Valued Optimization: An Introduction with Applications. Springer, Berlin (2015)

    Book  Google Scholar 

  26. Dontchev, A.L., Hager, W.W.: An inverse mapping theorem for set-valued maps. Proc. Am. Math. Soc. 121, 71–89 (1994)

    Article  MathSciNet  Google Scholar 

  27. Geoffroy, M.H., Piétrus, A.: A superquadratic method for solving generalized equations in the Hölder case. Ricerche Mat. 52(2), 231–240 (2003)

    MathSciNet  MATH  Google Scholar 

  28. Robinson, S.M.: A point-of-attraction result for Newton’s method with point-based approximations. Optimization 60(1–2), 89–99 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees and editor for all the suggestions and comments that allowed us to improve the quality of the paper. Research of the first author was partially supported by Contract EA4540 (France). Research of the second author was partially supported by CNPq Grants 434796/2018-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michaël Gaydu.

Additional information

Communicated by Asen L. Dontchev.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaydu, M., Silva, G.N. A General Iterative Procedure to Solve Generalized Equations with Differentiable Multifunction. J Optim Theory Appl 185, 207–222 (2020). https://doi.org/10.1007/s10957-020-01635-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-020-01635-8

Keywords

Mathematics Subject Classification

Navigation