Skip to main content
Log in

Characterization of Radially Lower Semicontinuous Pseudoconvex Functions

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we prove that a radially lower semicontinuous function of one variable, defined on some interval, is pseudoconvex, if and only if its domain of definition can be split into three parts such that the function is strictly monotone decreasing without stationary points over the first subinterval, it is constant over the second one, and it is strictly monotone increasing without stationary points over the third subinterval. Each one or two of these parts may be empty or degenerate into a single point. The proof of this property is easy, when the function is differentiable. We consider functions, which are pseudoconvex with respect to the lower Dini directional derivative. This result follows from some known claims, but our theorem is a shot, directed to the target. We apply this characterization to obtain a complete characterization of strictly pseudoconvex functions. We also derive the respective results, when the function is radially lower semicontinuous in a real linear space. Several applications of the characterization are provided. A result due to Diewert, Avriel and Zang is extended to radially continuous functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avriel, M., Diewert, W., Schaible, S. Zang, I.: Generalized Concavity. Classics in Applied Mathematics, No. 63, SIAM, Philadelphia (2010), Originally published: Plenum Press, New York (1988)

  2. Bazaraa, M.S., Sheraly, H.D., Shetty, C.M.: Nonlinear Programming—Theory and Algorithms. Wiley, New York (2006)

    Book  Google Scholar 

  3. Cambini, A., Martein, L.: Generalized Convexity and Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 616. Springer, Berlin (2009)

    MATH  Google Scholar 

  4. Giorgi, G., Guerraggio, A., Thierfelder, J.: Mathematics of Optimization. Elsevier Science, New York (2004)

    MATH  Google Scholar 

  5. Mangasarian, O.L.: Nonlinear Programming. Classics in Applied Mathematics, vol. 10. SIAM, Philadelphia (1994)

    Book  Google Scholar 

  6. Martos, B.: Nonlinear Programming—Theory and Methods. Akademiai Kiado, Budapest (1975)

    MATH  Google Scholar 

  7. Mangasarian, O.L.: Pseudo-convex functions. SIAM J. Control 3, 281–290 (1965)

    MathSciNet  MATH  Google Scholar 

  8. Giorgi, G.: Optimality conditions under generalized convexity revisited. Ann. Univ. Buchar. Math. Ser. 4, 479–490 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Barani, A.: Convexity of the solution set of a pseudoconvex inequality on Riemannian manifolds. Numer. Funct. Anal. Optim. 39, 588–599 (2018)

    Article  MathSciNet  Google Scholar 

  10. Ivanov, V.I.: First-order characterizations of pseudoconvex functions. Serdica Math. J. 27, 203–218 (2001)

    MathSciNet  MATH  Google Scholar 

  11. Ivanov, V.I.: Optimality conditions and characterizations of the solution sets in generalized convex problems and variational inequalities. J. Optim. Theory Appl. 158, 65–84 (2013)

    Article  MathSciNet  Google Scholar 

  12. Ivanov, V.I.: Characterizations of pseudoconvex functions and semistrictly quasiconvex ones. J. Glob. Optim. 57, 677–693 (2013)

    Article  MathSciNet  Google Scholar 

  13. Ivanov, V.I.: Characterizations of solution sets of differentiable quasiconvex programming problems. J. Optim. Theory Appl. 181, 144–162 (2019)

    Article  MathSciNet  Google Scholar 

  14. Jaddar, A.: On optimality conditions for pseudoconvex programming in terms of Dini subdifferentials. Int. J. Math. Anal. 7, 891–898 (2013)

    Article  MathSciNet  Google Scholar 

  15. Son, T.Q., Kim, D.S.: A new approach to characterize solution set of a pseudoconvex programming problem. J. Comput. Appl. Math. 261, 333–340 (2014)

    Article  MathSciNet  Google Scholar 

  16. Suzuki, S., Kuroiwa, D.: Characterizations of the solution set for quasiconvex programming in terms of Greenberg–Pierskalla subdifferential. J. Glob. Optim. 62, 431–441 (2015)

    Article  MathSciNet  Google Scholar 

  17. Levi, E.E.: Studi sui punti singolari essenziali delle funzioni analitiche di due o più variabili complesse. Ann. Mat. Pura Appl. 17, 61–68 (1910)

    Article  Google Scholar 

  18. Avriel, M., Schaible, S.: Second-order characterizations of pseudoconvex functions. Math. Program. 14, 170–185 (1978)

    Article  MathSciNet  Google Scholar 

  19. Aussel, D.: Subdifferential properties of quasiconvex and pseudoconvex functions: unified approach. J. Optim. Theory Appl. 97, 29–45 (1998)

    Article  MathSciNet  Google Scholar 

  20. Crouzeix, J.P., Ferland, J.: Criteria for quasiconvexity and pseudoconvexity: relations and comparisons. Math. Program. 23, 193–202 (1982)

    Article  Google Scholar 

  21. Daniilidis, A., Hadjisavvas, N.: On the subdifferentials of quasiconvex and pseudoconvex functions and cyclic monotonicity. J. Math. Anal. Appl. 237, 30–42 (1999)

    Article  MathSciNet  Google Scholar 

  22. Diewert, W.E.: Alternative characterizations of six kinds of quasiconvexity in the nondifferentiable case with applications to nonlinear programming. In: Schaible, S., Ziemba, W.T. (eds.) Generalized Concavity in Optimization and Economics, pp. 51–93. Academic Press, New York (1981)

    MATH  Google Scholar 

  23. Diewert, W.E., Avriel, M., Zang, I.: Nine kinds of quasiconcavity and concavity. J. Econ. Theory 25, 397–420 (1981)

    Article  MathSciNet  Google Scholar 

  24. Ginchev, I., Ivanov, V.I.: Second-order characterizations of convex and pseudoconvex functions. J. Appl. Anal. 9, 261–273 (2003)

    Article  MathSciNet  Google Scholar 

  25. Giorgi, G., Thierfelder, J.: Constrained quadratic forms and generalized convexity of \({\rm C}^2\)-functions revisited. In: Giorgi, G., Rossi, F. (eds.) Generalized Convexity and Optimization for Economic and Financial Decisions, pp. 179–219. Pitagora Editrice, Bologna (1999)

    MATH  Google Scholar 

  26. Hassouni, A., Jaddar, A.: On pseudoconvex functions and applications to global optimization. ESAIM Proc. 20, 128–148 (2007)

    Article  MathSciNet  Google Scholar 

  27. Khanh, P.D., Phat, V.T.: On second-order conditions for quasiconvexity and pseudoconvexity of \({\rm C}^{1,1}\)-smooth functions. arXiv:1810.12783 (2018)

  28. Komlosi, S.: Some properties of nondifferentiable pseudoconvex functions. Math. Program. 26, 232–237 (1983)

    Article  MathSciNet  Google Scholar 

  29. Komlosi, S.: On pseudoconvex functions. Acta Math. Sci. (Szeged) 57, 569–586 (1993)

    MathSciNet  MATH  Google Scholar 

  30. Komlosi, S.: Generalized monotonicity and generalized convexity. J. Optim. Theory Appl. 84, 361–376 (1995)

    Article  MathSciNet  Google Scholar 

  31. Mereau, P., Paquet, J.-G.: Second order conditions for pseudo-convex functions. SIAM J. Appl. Math. 27, 131–136 (1974)

    Article  MathSciNet  Google Scholar 

  32. Miflin, R.: Semismooth and semiconvex functions in constrained optimization. SIAM J. Control Optim. 15, 959–972 (1977)

    Article  MathSciNet  Google Scholar 

  33. Penot, J.-P., Quang, P.H.: Generalized convexity of functions and generalized monotonicity of set-valued maps. J. Optim. Theory Appl. 92, 343–356 (1997)

    Article  MathSciNet  Google Scholar 

  34. Soleimani-damaneh, M.: Characterizations of nonsmooth quasiconvex and pseudoconvex functions. J. Math. Anal. Appl. 330, 1387–1392 (2007)

    Article  MathSciNet  Google Scholar 

  35. Soleimani-damaneh, M.: On generalized convexity in Asplund spaces. Nonlinear Anal. 70, 3072–3075 (2009)

    Article  MathSciNet  Google Scholar 

  36. Thompson, W., Parke, D.: Some properties of generalized concave functions. Oper. Res. 21, 305–313 (1973)

    Article  MathSciNet  Google Scholar 

  37. Clarke, F.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  38. Pshenichnyi, B.N.: Necessary Conditions for Extremum. Marcel Dekker, New York (1983)

    MATH  Google Scholar 

  39. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  Google Scholar 

Download references

Acknowledgements

The author would like to express his gratitude to the anonymous referees for their helpful comments on the manuscript. This research is partially supported by the TU-Varna Grant No. 19/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vsevolod I. Ivanov.

Additional information

Communicated by Constantin Zalinescu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, V.I. Characterization of Radially Lower Semicontinuous Pseudoconvex Functions. J Optim Theory Appl 184, 368–383 (2020). https://doi.org/10.1007/s10957-019-01604-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-019-01604-w

Keywords

Mathematics Subject Classification

Navigation