Skip to main content
Log in

Existence Results for Noncoercive Mixed Variational Inequalities in Finite Dimensional Spaces

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We use asymptotic analysis and generalized asymptotic functions for studying nonlinear and noncoercive mixed variational inequalities in finite dimensional spaces in the nonconvex case, that is, when the operator is nonlinear and noncoercive and the function is nonconvex and noncoercive. We provide general necessary and sufficient optimality conditions for the set of solutions to be nonempty and compact. As a consequence, a characterization of the nonemptiness and compactness of the solution set, when the operator is affine and the function is convex, is given. Finally, a comparison with existence results for equilibrium problems is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Addi, K., Adly, S., Goeleven, G., Saoud, H.: A sensitivity analysis of a class of semi-coercive variational inequalities using recession tools. J. Glob. Optim. 40, 7–27 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chadli, O., Gwinner, J., Ovcharova, N.: On semicoercive variational–hemivariational inequalities—existence, approximation, and regularization. Vietnam J. Math. 46, 329–342 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Goeleven, D.: Existence and uniqueness for a linear mixed variational inequality arising in electrical circuits with transistors. J. Optim. Theory Appl. 138, 347–406 (2008)

    Article  MathSciNet  Google Scholar 

  4. Goeleven, D.: Complementarity and Variational Inequalities in Electronics. Academic Press, London (2017)

    MATH  Google Scholar 

  5. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980)

    MATH  Google Scholar 

  6. Konnov, I., Volotskaya, E.O.: Mixed mariational inequalities and economic equilibrium problems. J. Appl. Math. 6, 289–314 (2002)

    Article  MATH  Google Scholar 

  7. Ovcharova, N., Gwinner, J.: Semicoercive variational inequalities: from existence to numerical solutions of nonmonotone contact problems. J. Optim. Theory Appl. 171, 422–439 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Wang, M.: The existence results and Tikhonov regularization method for generalized mixed variational inequalities in Banach spaces. Ann. Math. Phys. 7, 151–163 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Tang, G.J., Li, Y.: Existence of solutions for mixed variational inequalities with perturbation in Banach spaces. Optim. Lett. (2018). https://doi.org/10.1007/s11590-018-1366-3

    Google Scholar 

  10. Adly, S., Goeleven, D., Théra, M.: Recession mappings and noncoercive variational inequalities. Nonlinear Anal. 26, 1573–1603 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Auslender, A., Teboulle, M.: Asymptotic Cones and Functions in Optimization and Variational Inequalities. Springer, New York (2003)

    MATH  Google Scholar 

  12. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton, NJ (1970)

    Book  MATH  Google Scholar 

  13. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  14. Baiocchi, C., Buttazzo, G., Gastaldi, F., Tomarelli, F.: General existence theorems for unilateral problems in continuum mechanics. Arch. J. Ration. Mech. Anal. 100, 149–189 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  15. Buttazzo, G., Tomarelli, F.: Nonlinear Neuman problems. Adv. Math. 89, 126–142 (1991)

    Article  MATH  Google Scholar 

  16. Lahmdani, A., Chadli, O., Yao, J.C.: Existence of solutions for noncoercive hemivariational inequalities by an equilibrium approach under pseudomonotone perturbation. J. Optim. Theory Appl. Math. 160, 49–66 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Flores-Bazán, F., Flores-Bazán, F., Vera, C.: Maximizing and minimizing quasiconvex functions: related properties, existence and optimality conditions via radial epiderivates. J. Glob. Optim. 63, 99–123 (2015)

    Article  MATH  Google Scholar 

  18. Flores-Bazán, F., Hadjisavvas, N., Lara, F., Montenegro, I.: First- and second-order asymptotic analysis with applications in quasiconvex optimization. J. Optim. Theory Appl. 170, 372–393 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hadjisavvas, N., Lara, F., Martínez-Legaz, J.E.: A quasiconvex asymptotic function with applications in optimization. J. Optim. Theory Appl. 180, 170–186 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Iusem, A., Lara, F.: Optimality conditions for vector equilibrium problems with applications. J. Optim. Theory Appl. 180, 187–206 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123–145 (1994)

    MathSciNet  MATH  Google Scholar 

  22. Crouzeix, J.P.: Criteria for generalized convexity and generalized monotonicity in the differentiable case. In: Hadjisavvas, N., Komlósi, S., Schaible, S. (eds.) Handbook of Generalized Convexity and Generalized Monotonicity, pp. 89–119. Springer, Boston (2005)

    Chapter  Google Scholar 

  23. Jeyakumar, V., Oettli, W., Natividad, M.: A solvability theorem for a class of quasiconvex mappings with applications to optimization. J. Math. Anal. Appl. 179, 537–546 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. Amara, C.: Directions de majoration d’une fonction quasiconvexe et applications. Serdica Math. J. 24, 289–306 (1998)

    MathSciNet  MATH  Google Scholar 

  25. Penot, J.P.: What is quasiconvex analysis? Optimization 47, 35–110 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hadjisavvas, N., Komlosi, S., Schaible, S.: Handbook of Generalized Convexity and Generalized Monotonicity. Springer, Boston (2005)

    Book  MATH  Google Scholar 

  27. Hadjisavvas, N., Schaible, S.: Quasimonotone variational inequalities in Banach spaces. J. Optim. Theory Appl. 90, 95–111 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hadjisavvas, N., Schaible, S., Wong, N.C.: Pseudomonotone operators: a survey of the theory and its applications. J. Optim. Theory Appl. 152, 1–20 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Cambini, A., Martein, L.: Generalized Convexity and Optimization. Springer, Berlin (2009)

    MATH  Google Scholar 

  30. Oettli, W.: A remark on vector-valued equilibria and generalized monotonicity. Acta Math. Vietnam. 22, 213–221 (1997)

    MathSciNet  MATH  Google Scholar 

  31. Hadjisavvas, N.: Convexity, generalized convexity and applications. In: Al-Mezel, S., et al. (eds.) Fixed Point Theory, Variational Analysis and Optimization, pp. 139–169. Taylor & Francis, Boca Raton (2014)

    Chapter  Google Scholar 

  32. Tomarelli, F.: Noncoercive variational inequalities for pseudomonotone operators. Rend. Semin. Mat. Fis. Milano 61, 141–183 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ait Mansour, M., Chbani, Z., Riahi, H.: Recession bifunction and solvability of noncoercive equilibrium problems. Commun. Appl. Anal. 7, 369–377 (2003)

    MathSciNet  MATH  Google Scholar 

  34. Cotrina, J., Garcia, Y.: Equilibrium problems: existence results and applications. Set Valued Var. Anal. 26, 159–177 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Iusem, A., Kassay, G., Sosa, W.: On certain conditions for the existence of solutions of equilibrium problems. Math. Program. 116, 259–273 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors want to express their gratitude to both referees for their criticism and suggestions that helped to improve this paper. For the second author, this research was partially supported by Conicyt-Chile throughout Fondecyt Iniciación 11180320.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe Lara.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iusem, A., Lara, F. Existence Results for Noncoercive Mixed Variational Inequalities in Finite Dimensional Spaces. J Optim Theory Appl 183, 122–138 (2019). https://doi.org/10.1007/s10957-019-01548-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-019-01548-1

Keywords

Mathematics Subject Classification

Navigation