Skip to main content
Log in

A Revision on Geodesic Pseudo-Convex Combination and Knaster–Kuratowski–Mazurkiewicz Theorem on Hadamard Manifolds

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we point out that a recent characterization of geodesic convex hull on Hadamard manifolds is not rigorous and explain why the characterization does not hold like it in linear spaces. Therefore, a definition of geodesic pseudo-convex combination is proposed to show that the Knaster–Kuratowski–Mazurkiewicz theorem still holds under some mild conditions on Hadamard manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Rapcsák, T.: Smooth Nonlinear Optimization in \({\mathbb{R}}^n\). Kluwer, Dordrecht (1997)

    Book  MATH  Google Scholar 

  2. Udriste, C.: Convex functions and optimization methods on Riemannian manifolds. In: Hazewinkel, M. (ed.) Mathematics and its Applications, vol. 297. Kluwer, Dordrecht (1994)

    Google Scholar 

  3. Rapcsák, T.: Geodesic convexity in nonlinear optimization. J. Optim. Theory Appl. 69, 169–183 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Mititelu, S.: Generalized invexity and vector optimization on differentiable manifolds. Differ. Geom. Dyn. Syst. 3, 21–31 (2001)

    MathSciNet  MATH  Google Scholar 

  5. Barani, A., Pouryayevali, M.R.: Invex sets and preinvex functions on Riemannian manifolds. J. Math. Anal. Appl. 328, 767–779 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Jost, J.: Nonpositive Curvature: Geometric and Analytic Aspects. Birkhauser Verlag, Basel (1997)

    Book  MATH  Google Scholar 

  7. do Carmo, M.P.: Riemannian Geometry. Birkhauser, Boston (1992)

    Book  MATH  Google Scholar 

  8. Zhou, L.W., Huang, N.J.: Generalized KKM theorems on Hadamard manifolds with applications. http://www.paper.edu.cn/index.php/default/releasepaper/content/200906-669 (2009). Accessed 19 June 2009

  9. Yang, Z., Pu, Y.J.: Existence and stability of solutions for maximal element theorem on Hadamard manifolds with applications. Nonlinear Anal. TMA 75, 516–525 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Papa Quiroz, E.A., Oliveira, P.R.: Proximal point methods for quasiconvex and convex functions with Bregman distances on Hadamard manifolds. J. Convex Anal. 16, 49–69 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Colao, V., López, G., Marino, G., Martín-Márquez, V.: Equilibrium problems in Hadamard manifolds. J. Math. Anal. Appl. 388, 61–77 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhou, L.W., Huang, N.J.: Existence of solutions for vector optimizations on Hadamard manifolds. J. Optim. Theory Appl. 157, 44–53 (2012)

    Article  MathSciNet  Google Scholar 

  13. Kristály, A., Li, C., López, G., Nicolae, A.: What do ’convexities’ imply on Hadamard manifolds? J. Optim. Theory Appl. 170, 1068–1074 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhou, L.W., Xiao, Y.B., Huang, N.J.: New characterization of geodesic convexity on Hadamard manifolds with applications. J. Optim. Theory Appl. 172, 824–844 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Németh, S.Z.: Variational inequalities on Hadamard manifolds. Nonlinear Anal. TMA 52, 1491–1498 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Tang, G.J., Zhou, L.W., Huang, N.J.: Existence results for a class of hemivariational inequality problems on Hadamard manifolds. Optimization 65, 1451–1461 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen, S.L., Huang, N.J.: Vector variational inequalities and vector optimization problems on Hadamard manifolds. Optim. Lett. 10, 753–767 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, C., López, G., Martín-Márquez, V.: Monotone vector fields and the proximal point algorithm on Hadamard manifolds. J. Lond. Math. Soc. 79(2), 663–683 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chavel, I.: Riemannian Geometry—A Modern Introduction. Cambridge University Press, London (1993)

    MATH  Google Scholar 

  20. Sakai, T.: Riemannian Geometry. Translations of Mathematical Monographs, vol. 149. American Mathematical Society, Providence (1996)

    Book  Google Scholar 

  21. Edwards, R.E.: Functional Analysis. Theory and Applications. Corrected reprint of the 1965 original. Dover Publications, Inc., New York (1995)

  22. Németh, S.Z.: Variational inequalities on Hadamard manifolds. https://www.researchgate.net/publication/242990657/VariationalinequalitiesonHadamardmanifolds (2003). Accessed 27 Oct 2017

  23. Ferreira, O.P., Pérez, L.R.L., Németh, S.Z.: Singularities of monotone vector fields and an extragradient-type algorithm. J. Glob. Optim. 31, 133–151 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the editor and the reviewers whose valuable comments and suggestions have led to much improvement of the paper. The authors would like to thank Professor Németh and Professor Kristály for their warm help. This work was supported by the National Natural Science Foundation of China (11471230, 11671282), the Science and Technology Innovation Team of Education Department of Sichuan for Dynamical System and its Applications (No.18TD0013) and the Youth Science and Technology Innovation Team of SWPU for Nonlinear Systems (No. 2017CXTD02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan-jing Huang.

Additional information

Communicated by Alexandru Kristály.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Lw., Huang, Nj. A Revision on Geodesic Pseudo-Convex Combination and Knaster–Kuratowski–Mazurkiewicz Theorem on Hadamard Manifolds. J Optim Theory Appl 182, 1186–1198 (2019). https://doi.org/10.1007/s10957-019-01511-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-019-01511-0

Keywords

Mathematics Subject Classification

Navigation