Skip to main content
Log in

Gradient Polyconvexity in Evolutionary Models of Shape-Memory Alloys

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We show the existence of an energetic solution to a model of shape-memory alloys in which the elastic energy is described by means of a gradient polyconvex functional. This allows us to show the existence of a solution based on weak continuity of nonlinear minors of deformation gradients in Sobolev spaces. Admissible deformations do not necessarily have integrable second derivatives. Under suitable assumptions, our model allows for solutions which are orientation preserving and globally injective everywhere in the domain representing the specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Toupin, R.A.: Elastic materials with couple stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962)

    Article  MathSciNet  Google Scholar 

  2. Toupin, R.A.: Theory of elasticity with couple stress. Arch. Ration. Mech. Anal. 17, 85–112 (1964)

    Article  MathSciNet  Google Scholar 

  3. Green, A.E., Rivlin, R.S.: Multipolar continuum mechanics. Arch. Ration. Mech. Anal. 17, 113–147 (1964)

    Article  MathSciNet  Google Scholar 

  4. Dunn, J.E., Serrin, J.: On the thermomechanics of interstitial working. Arch. Ration. Mech. Anal. 88, 95–133 (1985)

    Article  MathSciNet  Google Scholar 

  5. Capriz, G.: Continua with latent microstructure. Arch. Ration. Mech. Anal. 90, 43–56 (1985)

    Article  MathSciNet  Google Scholar 

  6. Ball, J.M., Currie, J.C., Olver, P.L.: Null Lagrangians, weak continuity, and variational problems of arbitrary order. J. Funct. Anal. 41, 135–174 (1981)

    Article  MathSciNet  Google Scholar 

  7. Dell’Isola, F., Sciarra, G., Vidoli, S.: Generalized Hooke’s law for isotropic second gradient materials. Proc. R. Soc. Lond. A 465, 2177–2196 (2009)

    Article  MathSciNet  Google Scholar 

  8. Forest, S.: Micromorphic approach for gradient elasticity, viscoplasticity, and damage. J. Eng. Mech. 135, 117 (2009)

    Article  Google Scholar 

  9. Kouranbaeva, S., Shkoller, S.: A variational approach to second-order multisymplectic field theory. J. Geom. Phys. 35, 333–366 (2000)

    Article  MathSciNet  Google Scholar 

  10. Mariano, P.M.: Geometry and balance of hyperstresses. Rend. Lincei Mat. Appl. 18, 311–331 (2007)

    MathSciNet  MATH  Google Scholar 

  11. Segev, R.: Geometric analysis of hyper-stresses. Int. J. Eng. Sci. 120, 100–118 (2017)

    Article  MathSciNet  Google Scholar 

  12. Šilhavý, M.: Phase transitions in non-simple bodies. Arch. Ration. Mech. Anal. 88, 135–161 (1985)

    Article  MathSciNet  Google Scholar 

  13. Ball, J.M., Crooks, E.C.M.: Local minimizers and planar interfaces in a phase-transition model with interfacial energy. Calc. Var. 40, 501–538 (2011)

    Article  MathSciNet  Google Scholar 

  14. Ball, J.M., Mora-Corral, C.: A variational model allowing both smooth and sharp phase boundaries in solids. Commun. Pure Appl. Anal. 8, 55–81 (2009)

    MathSciNet  MATH  Google Scholar 

  15. Benešová, B., Kružík, M.: Weak lower semicontinuity of integral functionals and applications. SIAM Rev. 59, 703–766 (2017)

    Article  MathSciNet  Google Scholar 

  16. Benešová, B., Kružík, M., Schlömerkemper, A.: A note on locking materials and gradient polyconvexity. Math. Mod. Methods Appl. Sci. 28, 2367–2401 (2018)

    Article  MathSciNet  Google Scholar 

  17. Dacorogna, B.: Direct Methods in the Calculus of Variations, 2nd edn. Springer, Berlin (2008)

    MATH  Google Scholar 

  18. Morrey, C.B.: Quasi-convexity and the lower semicontinuity of multiple integrals. Pac. J. Math. 2, 25–53 (1952)

    Article  MathSciNet  Google Scholar 

  19. Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63, 337–403 (1977)

    Article  MathSciNet  Google Scholar 

  20. Ball, J.M., James, R.D.: Fine phase mixtures as minimizers of energy. Arch. Ration. Mech. Anal. 100, 13–52 (1988)

    Article  MathSciNet  Google Scholar 

  21. Bhattacharya, K.: Microstructure of Martensite. Why It Forms and How It Gives Rise to the Shape-Memory Effect. Oxford University Press, New York (2003)

    MATH  Google Scholar 

  22. Müller, S.: Variational models for microstructure and phase transitions. Lecture Notes in Mathematics, vol. 1713, pp. 85–210. Springer, Berlin (1999)

    MATH  Google Scholar 

  23. Mielke, A., Roubíček, T.: Rate-Independent Systems: Theory and Applications. Springer, New York (2015)

    Book  Google Scholar 

  24. Benešová, B., Kružík, M.: Characterization of gradient Young measures generated by homeomorphisms in the plane. ESAIM Control Optim. Calc. Var. 22, 267–288 (2016)

    Article  MathSciNet  Google Scholar 

  25. Conti, S., Dolzmann, G.: On the theory of relaxation in nonlinear elasticity with constraints on the determinant. Arch. Ration. Mech. Anal. 217, 413–437 (2015)

    Article  MathSciNet  Google Scholar 

  26. Koumatos, K., Rindler, F., Wiedemann, E.: Orientation-preserving Young measures. Q. J. Math. 67, 439–466 (2016)

    Article  MathSciNet  Google Scholar 

  27. Ciarlet, P.G.: Mathematical Elasticity Vol. I: Three-dimensional Elasticity. North-Holland, Amsterdam (1988)

    MATH  Google Scholar 

  28. Fonseca, I., Leoni, G.: Modern Methods in the Calculus of Variations: \(L^p\) Spaces. Springer, New York (2007)

    MATH  Google Scholar 

  29. Ciarlet, P.G., Nečas, J.: Injectivity and self-contact in nonlinear elasticity. Arch. Ration. Mech. Anal. 97, 171–188 (1987)

    Article  MathSciNet  Google Scholar 

  30. Giaquinta, M., Modica, M., Souček, J.: Cartesian currents, weak diffeomorphisms and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 105, 97–159 (1990). Erratum and Addendum 109, 385–392 (1990)

    MathSciNet  MATH  Google Scholar 

  31. Ball, J.M.: Global invertibility of Sobolev functions and the interpenetration of matter. Proc. R. Soc. Edinb. 88A, 315–328 (1981)

    Article  MathSciNet  Google Scholar 

  32. Hencl, S., Koskela, P.: Lectures on Mappings of Finite Distortion. LNM 2096. Springer, Cham (2014)

    Book  Google Scholar 

  33. Francfort, G., Mielke, A.: Existence results for a class of rate-independent material models with nonconvex elastic energies. J. Reine Angew. Math. 595, 55–91 (2006)

    MathSciNet  MATH  Google Scholar 

  34. Mielke, A., Theil, F.: On rate-independent hysteresis models. NoDEA Nonlinear Differ. Equ. Appl. 11, 151–189 (2004)

    Article  MathSciNet  Google Scholar 

  35. Mielke, A., Theil, F., Levitas, V.I.: A variational formulation of rate-independent phase transformations using an extremum principle. Arch. Ration. Mech. Anal. 162, 137–177 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are indebted to the two referees for many helpful comments, in particular, for an overview of the history of non-simple materials. The research of MK was partly supported by the GAČR Grants 17-04301S and 18-03834S. PP moreover gratefully acknowledges the financial support by GAUK Project No. 670218, by Charles University Research Program No. UNCE/SCI/023, and by GAČR-FWF Project 16-34894L. This work was partially supported also by the Project PPP 57212737 with funds from the BMBF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Kružík.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kružík, M., Pelech, P. & Schlömerkemper, A. Gradient Polyconvexity in Evolutionary Models of Shape-Memory Alloys. J Optim Theory Appl 184, 5–20 (2020). https://doi.org/10.1007/s10957-019-01489-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-019-01489-9

Keywords

Mathematics Subject Classification

Navigation