Journal of Optimization Theory and Applications

, Volume 181, Issue 3, pp 1033–1052 | Cite as

The Egalitarian Efficient Extension of the Aumann–Drèze Value

  • Xun-Feng Hu
  • Gen-Jiu Xu
  • Deng-Feng LiEmail author


In this paper, we propose a new efficient value for transferable utility cooperative games with a coalition structure. It first assigns to every player his Aumann–Drèze value and then allocates the remainder of the worth of the grand coalition among players equally. As it is identical with the Aumann–Drèze value for coalitional games with a singleton coalition structure, we call it the egalitarian efficient extension of the Aumann–Drèze value. We provide three axiomatizations of it and compare it with other well-known efficient coalitional values, especially the Owen value and the two-step Shapley value.


Transferable utility cooperative game Coalition structure Aumann–Drèze value Owen value Two-step Shapley value 

Mathematics Subject Classification




Great appreciation is given to Hans Peters and three anonymous referees for helpful comments. This work was supported by the Key Program of National Natural Science Foundation of China (71231003), the National Natural Science Foundation of China (71671140), and the Scientific Research Allowance of Guangzhou University (69-18ZX10337).


  1. 1.
    Myerson, R.B.: Graphs and cooperation in games. Math. Oper. Res. 2(3), 225–229 (1977)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Aumann, R.J., Drèze, J.H.: Cooperative games with coalition structures. Int. J. Game Theory 3(4), 217–237 (1974)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Meessen, R.: Communication games. Master’s Thesis. Nijmegen University (1988)Google Scholar
  4. 4.
    Herings, J.J., van der Laan, G., Talman, D.: The average tree solution for cycle-free graph games. Games Econ. Behav. 62, 77–92 (2008)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Owen, G.: Values of games with a priori unions. In: Henn, R., Moeschlin, O. (eds.) Mathematical Economics and Game Theory, pp. 76–88. Springer, Berlin (1977)Google Scholar
  6. 6.
    Kamijo, Y.: A two-step Shapley value for cooperative games with coalition structures. Int. Game Theory Rev. 11(2), 207–214 (2009)MathSciNetzbMATHGoogle Scholar
  7. 7.
    van den Brink, R., Khmelnitskaya, A., van der Laan, G.: An efficient and fair solution for communication graph games. Econ. Lett. 117(3), 786–789 (2012)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Hamiache, G.: A matrix approach to TU games with coalition and communication structures. Soc. Choice Welf. 38(1), 85–100 (2012)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Hu, X.F., Li, D.F., Xu, G.J.: Fair distribution of surplus and efficient extensions of the Myerson value. Econ. Lett. 165, 1–5 (2018)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Béal, S., Casajus, A., Huettner, F.: Efficient extensions of communication values. Ann. Oper. Res. 264(1–2), 41–56 (2018)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Slikker, M., van den Nouweland, A.: Social and Economic Networks in Cooperative Game Theory. Springer, New York (2001)Google Scholar
  12. 12.
    Driessen, T.S.H., Funaki, Y.: Coincidence of and collinearity between game theoretic solutions. Oper. Res. Spektrum 13(1), 15–30 (1991)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Gómez-Rúa, M., Vidal-Puga, J.: Balanced per capita contributions and level structure of cooperation. TOP 19(1), 167–176 (2011)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Calvo, E., Gutiérrez, E.: Solidarity in games with a coalition structure. Math. Soc. Sci. 60(3), 196–203 (2010)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Shapley, L.S.: A value for \(n\)-person games. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions to the Theory of Games, vol. II, pp. 307–317. Princeton University Press, Princeton (1953)Google Scholar
  16. 16.
    Béal, S., Casajus, A., Huettner, F.: Efficient extensions of the Myerson value. Soc. Choice Welf. 45(4), 819–827 (2015)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Xu, G.J., Driessen, T.S.H., Sun, H., Su, J.: Consistency for the additive efficient normalization of semivalues. Eur. J. Oper. Res. 224(3), 566–571 (2013)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Kamijo, Y.: The collective value: a new solution for games with coalition structures. TOP 21(3), 572–589 (2013)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Chun, Y., Park, B.: Population solidarity, population fair-ranking, and the egalitarian value. Int. J. Game Theory 41(2), 255–270 (2012)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Ferrières, S.: Nullified equal loss property and equal division values. Theory Decision 83(3), 385–406 (2017)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Kongo, T.: Effects of players’ nullification and equal (surplus) division values. Int. Game Theory Rev. 20(1), 1750,029 (2018)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Hart, S., Mas-Colell, A.: Potential, value, and consistency. Econometrica 57(3), 589–614 (1989)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Huettner, F.: A proportional value for cooperative games with a coalition structure. Theory Decision 78(2), 1–15 (2015)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Béal, S., Rémila, E., Solal, P.: Axiomatization and implementation of a class of solidarity values for TU-games. Theory Decision 83(1), 61–94 (2017)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Hu, X.F., Li, D.F.: A new axiomatization of the Shapley-solidarity value for games with a coalition structure. Oper. Res. Lett. 46(2), 163–167 (2018)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Wang, W.N., Sun, H., van den Brink, R., Xu, G.J.: The family of ideal values for cooperative games. J. Optim. Theory Appl. (2018).
  27. 27.
    Banzhaf, J.F.: Weighted voting doesn’t work: A mathematical analysis. Rutgers Law Review 19, 317–343 (1965)Google Scholar
  28. 28.
    Schmeidler, D.: The nucleolus of a characteristic function game. SIAM J. Appl. Math. 17(6), 1163–1170 (1969)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Levy, A., McLean, R.P.: Weighted coalition structure values. Games Econ. Behav. 1(3), 234–249 (1989)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Shapley, L.S.: Additive and non-additive set functions. Ph.D. Thesis, Princeton University, Princeton (1953)Google Scholar
  31. 31.
    Kalai, E., Samet, D.: On weighted Shapley values. Int. J. Game Theory 16(3), 205–222 (1987)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Hammer, P.L., Holzman, R.: Approximations of pseudo-Boolean functions; applications to game theory. Math. Methods Oper. Res. 36(1), 3–21 (1992)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Myerson, R.B.: Conference structures and fair allocation rules. Int. J. Game Theory 9(3), 169–182 (1980)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Calvo, E., Lasaga, J.J., Winter, E.: The principle of balanced contributions and hierarchies of cooperation. Math. Soc. Sci. 31(3), 171–182 (1996)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Casajus, A.: Outside options, component efficiency, and stability. Games Econ. Behav. 65(1), 49–61 (2009)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of ManagementGuangzhou UniversityGuangzhouChina
  2. 2.Department of Applied MathematicsNorthwestern Polytechnical UniversityXi’anChina
  3. 3.School of Economics and ManagementFuzhou UniversityFuzhouChina

Personalised recommendations