Advertisement

Metric and Geometric Relaxations of Self-Contracted Curves

  • Aris DaniilidisEmail author
  • Robert Deville
  • Estibalitz Durand-Cartagena
Article
  • 114 Downloads

Abstract

The metric notion of a self-contracted curve (respectively, self-expanded curve, if we reverse the orientation) is hereby extended in a natural way. Two new classes of curves arise from this extension, both depending on a parameter, a specific value of which corresponds to the class of self-expanded curves. The first class is obtained via a straightforward metric generalization of the metric inequality that defines self-expandedness, while the second one is based on the (weaker) geometric notion of the so-called cone property (eel-curve). In this work, we show that these two classes are different; in particular, curves from these two classes may have different asymptotic behavior. We also study rectifiability of these curves in the Euclidean space, with emphasis in the planar case.

Keywords

Self-contracted curve Self-expanded curve Rectifiability Length \(\lambda \)-curve \(\lambda \)-cone 

Mathematics Subject Classification

53A04 52A10 

Notes

Acknowledgements

The authors wish to thank K. Kurdyka, L. Rifford and F. Sanz for useful discussions and the two referees for their careful reading and suggestions. A. Daniilidis is supported by the Grants: BASAL AFB170001, FONDECYT 1171854, ECOS/CONICYT C14E06, REDES/CONICYT 150040 (Chile) and MTM2014-59179-C2-1-P (MINECO of Spain and ERDF of EU). R. Deville is supported by the Grants: ECOS/SUD C14E06 (France) and REDES/CONICYT-150040 (Chile). E. Durand-Cartagena is supported by the Grants MTM2015-65825-P (MINECO of Spain) and 2018-MAT14 (ETSI Industriales, UNED).

References

  1. 1.
    Daniilidis, A., Ley, O., Sabourau, S.: Asymptotic behavior of self-contracted planar curves and gradient orbits of convex functions. J. Math. Pures Appl. 94, 183–199 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Manselli, P., Pucci, C.: Maximum length of steepest descent curves for quasi-convex functions. Geom. Dedicata 38, 211–227 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Daniilidis, A., Drusvyatskiy, D., Lewis, A.S.: Orbits of geometric descent. Can. Math. Bull. 58, 44–50 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Longinetti, M., Manselli, P., Venturi, A.: On steepest descent curves for quasi convex families in \({\mathbb{R}}^{n}\). Math. Nachr. 288, 420–442 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Daniilidis, A., David, G., Durand-Cartagena, E., Lemenant, A.: Rectifiability of self-contracted curves in the Euclidean space and applications. J. Geom. Anal. 25, 1211–1239 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ohta, S.: Self-contracted curves in CAT(0)-spaces and their rectifiability (Preprint). arXiv:1711.09284
  7. 7.
    Zolotov, V.: Sets with small angles in self-contracted curves (Preprint). arXiv:1804.00234
  8. 8.
    Daniilidis, A., Deville, R., Durand-Cartagena, E., Rifford, L.: Self-contracted curves in Riemannian manifolds. J. Math. Anal. Appl. 457, 1333–1352 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Lemenant, A.: Rectifiability of non Euclidean planar self-contracted curves. Conflu. Math. 8, 23–38 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Stepanov, E., Teplitskaya, Y.: Self-contracted curves have finite length. J. Lond. Math. Soc. 96, 455–481 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Rockafellar, R.T., Wets, R.: Variational Analysis. Grundlehren der Mathematischen, Wissenschaften, vol. 317. Springer, Berlin (1998)CrossRefzbMATHGoogle Scholar
  12. 12.
    Aichholzer, O., Aurenhammer, F., Icking, C., Klein, R., Langetepe, E., Rote, G.: Generalized Self-Approaching Curves. In: 14th European Workshop on Computational Geometry CG98 (Barcelona). Discrete Appl. Math. 109(1–2), 3–24 (2001)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.DIM–CMM, UMI CNRS 2807Universidad de ChileSantiagoChile
  2. 2.Laboratoire Bordelais d’Analyse et Geométrie, Institut de Mathématiques de BordeauxUniversité de Bordeaux 1BordeauxFrance
  3. 3.Departamento de Matemática Aplicada, ETSI IndustrialesUNEDMadridSpain

Personalised recommendations