Skip to main content
Log in

Null, Nullifying, and Necessary Agents: Parallel Characterizations of the Banzhaf and Shapley Values

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In a cooperative game, we consider three special kinds of agents: null, nullifying, and necessary agents. A coalition with a null agent receives the same payoff if this agent leaves the coalition, a coalition with a nullifying agent receives nothing, and a coalition without a necessary agent also receives nothing. The null agent property proposes zero payoff to any null agent. We introduce new properties that propose payoffs for nullifying and necessary players. With these three properties and additivity, we obtain new characterizations of the Banzhaf and Shapley values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Let S be a finite set. In short notation, given \(i\in S\), we will write \(S\setminus i\) instead of \(S\setminus \left\{ i\right\} ,\) and given \(i\notin S\), we will write \(S\cup i\) instead of \(S\cup \left\{ i\right\} .\) We denote by s the cardinality of the set S and by n the cardinality of the grand coalition.

  2. Different versions of the 2-Efficiency property can be observed in [3].

  3. Kamijo and Kongo [9] proposed the property of Invariance from nullifying player deletion: this property states that the deletion of a nullifying player does not affect the other players’ payoffs.

  4. Casajus and Huettner [10] provided a characterization of the Equal Surplus Division value (Driessen and Funaki [11]) with a modification of the Nullifying Agents Get Nothing property.

References

  1. Shapley, L.S.: A value for \(n\)-person games. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions to the Theory of Games II, pp. 307–317. Princeton University Press, Princeton, NJ (1953)

    Google Scholar 

  2. Owen, G.: Multilinear extensions and the Banzhaf value. Nav. Res. Logist. Q. 22, 741–750 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alonso-Meijide, J.M., Álvarez-Mozos, M., Fiestras-Janeiro, G.: Notes on a comment on 2-efficiency and the Banzhaf value. Appl. Math. Lett. 25, 1098–1100 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Moretti, S., Patrone, F.: Transversality of the Shapley value. TOP 16, 1–41 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Feltkamp, V.: Alternative axiomatic characterization of the Shapley and Banzhaf values. Int. J. Game Theory 24, 179–186 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Young, H.P.: Monotonic solutions of cooperative games. Int. J. Game Theory 14, 65–72 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  7. Nowak, A.S.: On the axiomatization of the Banzhaf value without the additivity axiom. Int. J. Game Theory 26, 137–141 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. van den Brink, R.: Null or nullifying players: the difference between the Shapley value and equal division solutions. J. Econ. Theory 136, 767–775 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kamijo, Y., Kongo, T.: Whose deletion does not affect your payoff? The difference between the Shapley value, the egalitarian value, the solidarity value, and the Banzhaf value. Eur. J. Oper. Res. 216, 638–646 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Casajus, A., Huettner, F.: Null, nullifying, or dummifying players: the difference between the Shapley value, the equal division value, and the equal surplus division value. Econ. Lett. 122, 167–169 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Driessen, T., Funaki, Y.: Coincidence of and collinearity between game theoretic solutions. OR Spectr. 13, 15–30 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wang, W., Sun, H., van den Brink, R., Xu, G.: The family of ideal values for cooperative games. J. Optim. Theory Appl. (2018). https://doi.org/10.1007/s10957-018-1259-8

    Google Scholar 

  13. Owen, G.: Values of games with a priori unions. In: Henn, R., Moeschlin, O. (eds.) Mathematical Economics and Game Theory. Lecture Notes in Economics and Mathematical Systems, vol. 141, pp. 76–88. Springer, Berlin (1977)

    Chapter  Google Scholar 

  14. Owen, G.: Modification of the Banzhaf–Coleman index for games with a priori unions. In: Holler, M.J. (ed.) Power, Voting and Voting Power, pp. 232–238. Physica-Verlag, Wiirzburg (1982)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the ERDF, the MINECO/AEI grants MTM2017-87197-C3-1-P, MTM2017-87197-C3-1-P, and by the Xunta de Galicia (Grupos de Referencia Competitiva ED431C-2016-015 and ED431C-2017/38 and Centro Singular de Investigación de Galicia ED431G/01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Alonso-Meijide.

Additional information

Irinel Chiril Dragan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alonso-Meijide, J.M., Costa, J. & García-Jurado, I. Null, Nullifying, and Necessary Agents: Parallel Characterizations of the Banzhaf and Shapley Values. J Optim Theory Appl 180, 1027–1035 (2019). https://doi.org/10.1007/s10957-018-1403-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-018-1403-5

Keywords

Mathematics Subject Classification

Navigation