Advertisement

Journal of Optimization Theory and Applications

, Volume 180, Issue 3, pp 1027–1035 | Cite as

Null, Nullifying, and Necessary Agents: Parallel Characterizations of the Banzhaf and Shapley Values

  • José M. Alonso-MeijideEmail author
  • Julián Costa
  • Ignacio García-Jurado
Article

Abstract

In a cooperative game, we consider three special kinds of agents: null, nullifying, and necessary agents. A coalition with a null agent receives the same payoff if this agent leaves the coalition, a coalition with a nullifying agent receives nothing, and a coalition without a necessary agent also receives nothing. The null agent property proposes zero payoff to any null agent. We introduce new properties that propose payoffs for nullifying and necessary players. With these three properties and additivity, we obtain new characterizations of the Banzhaf and Shapley values.

Keywords

Banzhaf value Shapley value Axiomatic characterizations Null agent Nullifying agent Necessary agent 

Mathematics Subject Classification

91A12 

Notes

Acknowledgements

This work has been supported by the ERDF, the MINECO/AEI grants MTM2017-87197-C3-1-P, MTM2017-87197-C3-1-P, and by the Xunta de Galicia (Grupos de Referencia Competitiva ED431C-2016-015 and ED431C-2017/38 and Centro Singular de Investigación de Galicia ED431G/01).

References

  1. 1.
    Shapley, L.S.: A value for \(n\)-person games. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions to the Theory of Games II, pp. 307–317. Princeton University Press, Princeton, NJ (1953)Google Scholar
  2. 2.
    Owen, G.: Multilinear extensions and the Banzhaf value. Nav. Res. Logist. Q. 22, 741–750 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Alonso-Meijide, J.M., Álvarez-Mozos, M., Fiestras-Janeiro, G.: Notes on a comment on 2-efficiency and the Banzhaf value. Appl. Math. Lett. 25, 1098–1100 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Moretti, S., Patrone, F.: Transversality of the Shapley value. TOP 16, 1–41 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Feltkamp, V.: Alternative axiomatic characterization of the Shapley and Banzhaf values. Int. J. Game Theory 24, 179–186 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Young, H.P.: Monotonic solutions of cooperative games. Int. J. Game Theory 14, 65–72 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Nowak, A.S.: On the axiomatization of the Banzhaf value without the additivity axiom. Int. J. Game Theory 26, 137–141 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    van den Brink, R.: Null or nullifying players: the difference between the Shapley value and equal division solutions. J. Econ. Theory 136, 767–775 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kamijo, Y., Kongo, T.: Whose deletion does not affect your payoff? The difference between the Shapley value, the egalitarian value, the solidarity value, and the Banzhaf value. Eur. J. Oper. Res. 216, 638–646 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Casajus, A., Huettner, F.: Null, nullifying, or dummifying players: the difference between the Shapley value, the equal division value, and the equal surplus division value. Econ. Lett. 122, 167–169 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Driessen, T., Funaki, Y.: Coincidence of and collinearity between game theoretic solutions. OR Spectr. 13, 15–30 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Wang, W., Sun, H., van den Brink, R., Xu, G.: The family of ideal values for cooperative games. J. Optim. Theory Appl. (2018).  https://doi.org/10.1007/s10957-018-1259-8 Google Scholar
  13. 13.
    Owen, G.: Values of games with a priori unions. In: Henn, R., Moeschlin, O. (eds.) Mathematical Economics and Game Theory. Lecture Notes in Economics and Mathematical Systems, vol. 141, pp. 76–88. Springer, Berlin (1977)CrossRefGoogle Scholar
  14. 14.
    Owen, G.: Modification of the Banzhaf–Coleman index for games with a priori unions. In: Holler, M.J. (ed.) Power, Voting and Voting Power, pp. 232–238. Physica-Verlag, Wiirzburg (1982)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Grupo MODESTYA, Departamento de Estatística, Análise Matemática e OptimizaciónUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Grupo MODES, Departamento de MatemáticasUniversidade da CoruñaA CoruñaSpain

Personalised recommendations