Skip to main content
Log in

Optimal Long-Term Distributed Generation Planning and Reconfiguration of Distribution Systems: An Accelerating Benders’ Decomposition Approach

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we study the multi-period distributed generation planning problem in a multistage hierarchical distribution network. We first formulate the problem as a non-convex mixed-integer nonlinear programming problem. Since the proposed model is non-convex and generally hard to solve, we convexify the model based on semi-definite programming. Then, we use a customized Benders’ decomposition method with valid cuts to solve the convex relaxation model. Computational results show that the proposed algorithm provides an efficient way to solve the problem for relatively large-scale networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Correia, I., Nickel, S., Saldanha-da Gama, F.: A stochastic multi-period capacitated multiple allocation hub location problem: formulation and inequalities. Omega 74, 122–134 (2018)

    Article  Google Scholar 

  2. Costa, A.M.: A survey on Benders’ decomposition applied to fixed-charge network design problems. Comput. Oper. Res. 32(6), 1429–1450 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Costa, A.M., França, P.M., Lyra Filho, C.: Two-level network design with intermediate facilities: an application to electrical distribution systems. Omega 39(1), 3–13 (2011)

    Article  Google Scholar 

  4. Cote, G., Laughton, M.A.: Large-scale mixed integer programming: Benders-type heuristics. Eur. J. Oper. Res. 16(3), 327–333 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  5. Rebennack, S., Pardalos, P.M., Pereira, M.V., Iliadis, N.A.: Handbook of Power Systems I. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  6. Oliveira, C.A., Pardalos, P.M., Resende, M.G.: Optimization problems in multicast tree construction. In: Resende, M.G.C., Pardalos, P.M. (eds.) Handbook of Optimization in Telecommunications, pp. 701–731. Springer (2006)

  7. Da Silva, M.C., França, P.M., Da Silveira, P.D.B.: Long-range planning of power distribution systems: secondary networks. Comput. Electr. Eng. 22(3), 179–191 (1996)

    Article  Google Scholar 

  8. Chiradeja, P.: Benefit of distributed generation: a line loss reduction analysis. In: Transmission and Distribution Conference and Exhibition: Asia and Pacific, 2005 IEEE/PES, pp. 1–5. IEEE (2005)

  9. Griffin, T., Tomsovic, K., Secrest, D., Law, A.: Placement of dispersed generation systems for reduced losses. In: System Sciences, 2000. Proceedings of the 33rd Annual Hawaii International Conference on, pp. 1–9. IEEE (2000)

  10. Nara, K., Hayashi, Y., Ikeda, K., Ashizawa, T.: Application of Tabu search to optimal placement of distributed generators. In: Power Engineering Society Winter Meeting, 2001. IEEE, vol. 2, pp. 918–923. IEEE (2001)

  11. Celli, G., Ghiani, E., Mocci, S., Pilo, F.: A multiobjective evolutionary algorithm for the sizing and sting of distributed generation. IEEE Trans. Power Syst. 20(2), 750–757 (2005)

    Article  Google Scholar 

  12. Glover, J.D., Sarma, M.S., Overbye, T.: Power System Analysis and Design, SI Version. Cengage Learning (2012)

  13. Zhu, J.: Optimization of Power System Operation, vol. 47. Wiley, Hoboken (2015)

    Google Scholar 

  14. Pandya, K., Joshi, S.: A survey of optimal power flow methods. J. Theor. Appl. Inf. Technol. 4(5), 450–458 (2008)

    Google Scholar 

  15. Chen, N., Tan, C.W., Quek, T.Q.: Electric vehicle charging in smart grid: optimality and valley-filling algorithms. IEEE J. Sel. Top. Signal Process. 8(6), 1073–1083 (2014)

    Article  Google Scholar 

  16. Ghasemi, M., Ghavidel, S., Ghanbarian, M.M., Gitizadeh, M.: Multi-objective optimal electric power planning in the power system using gaussian bare-bones imperialist competitive algorithm. Inf. Sci. 294, 286–304 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hours, J.H., Jones, C.N.: An alternating trust region algorithm for distributed linearly constrained nonlinear programs, application to the optimal power flow problem. J. Optim. Theory Appl. 173(3), 844–877 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lavaei, J., Low, S.H.: Zero duality gap in optimal power flow problem. IEEE Trans. Power Syst. 27(1), 92–107 (2012)

    Article  Google Scholar 

  19. Madani, R., Sojoudi, S., Lavaei, J.: Convex relaxation for optimal power flow problem: mesh networks. IEEE Trans. Power Syst. 30(1), 199–211 (2015)

    Article  Google Scholar 

  20. Sultana, U., Khairuddin, A.B., Aman, M., Mokhtar, A., Zareen, N.: A review of optimum DG placement based on minimization of power losses and voltage stability enhancement of distribution system. Renew. Sustain. Energy Rev. 63, 363–378 (2016)

    Article  Google Scholar 

  21. Tanwar, S.S., Khatod, D.: Techno-economic and environmental approach for optimal placement and sizing of renewable DGs in distribution system. Energy 127, 52–67 (2017)

    Article  Google Scholar 

  22. Davis, P., Ray, T.: A branch-bound algorithm for the capacitated facilities location problem. Nav. Res. Logist. (NRL) 16(3), 331–344 (1969)

    Article  MATH  Google Scholar 

  23. Coffrin, C., Hijazi, H.L., Van Hentenryck, P.: Strengthening the SDP relaxation of AC power flows with convex envelopes, bound tightening, and valid inequalities. IEEE Trans. Power Syst. 32(5), 3549–3558 (2017)

    Article  Google Scholar 

  24. Kocuk, B., Dey, S.S., Sun, X.A.: Inexactness of SDP relaxation and valid inequalities for optimal power flow. IEEE Trans. Power Syst. 31(1), 642–651 (2016)

    Article  Google Scholar 

  25. Benders, J.F.: Partitioning procedures for solving mixed-variables programming problems. Numer. Math. 4(1), 238–252 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  26. Geoffrion, A.M.: Generalized Benders’ decomposition. J. Optim. Theory Appl. 10(4), 237–260 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  27. Cordeau, J.F., Pasin, F., Solomon, M.M.: An integrated model for logistics network design. Ann. Oper. Res. 144(1), 59–82 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Cordeau, J.F., Soumis, F., Desrosiers, J.: A Benders’ decomposition approach for the locomotive and car assignment problem. Transp. Sci. 34(2), 133–149 (2000)

    Article  MATH  Google Scholar 

  29. Cordeau, J.F., Soumis, F., Desrosiers, J.: Simultaneous assignment of locomotives and cars to passenger trains. Oper. Res. 49(4), 531–548 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Raayatpanah, M.A., Fathabadi, H.S., Khalaj, B.H., Khodayifar, S.: Minimum cost multiple multicast network coding with quantized rates. Comput. Netw. 57(5), 1113–1123 (2013)

    Article  Google Scholar 

  31. Geoffrion, A.M., Graves, G.W.: Multicommodity distribution system design by Benders’ decomposition. Manag. Sci. 20(5), 822–844 (1974)

    Article  MATH  Google Scholar 

  32. Khodayifar, S., Raayatpanah, M., Pardalos, P.: An accelerating Benders decomposition approach to the integrated supply chain network design with distributed generation. Energy Syst. pp. 1-21 (2017). https://doi.org/10.1007/s12667-017-0256-6

  33. Zimmerman, R.D., Murillo-Sánchez, C.E., Thomas, R.J.: Matpower: steady-state operations, planning, and analysis tools for power systems research and education. IEEE Trans. Power Syst. 26(1), 12–19 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the editors for their constructive comments, which helped us improve the presentation of this paper substantially.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salman Khodayifar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodayifar, S., Raayatpanah, M.A., Rabiee, A. et al. Optimal Long-Term Distributed Generation Planning and Reconfiguration of Distribution Systems: An Accelerating Benders’ Decomposition Approach. J Optim Theory Appl 179, 283–310 (2018). https://doi.org/10.1007/s10957-018-1367-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-018-1367-5

Keywords

Mathematics Subject Classification

Navigation