Skip to main content
Log in

The Sign-Based Methods for Solving a Class of Nonlinear Complementarity Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, using the sign patterns of the solution of the equivalent modulus equation, the resolution of the nonlinear complementarity problem shrinks to find the zero of a differentiable nonlinear function. Then, a sign-based Newton’s method is established by applying the Newton’s iteration. The theoretical analysis for the sign patterns of the solution of the equivalent modulus equation is given under the assumption of strictly complementarity. Moreover, by using the known modulus-based matrix splitting iteration method to detect the sign patterns of the solution of the equivalent modulus equation, a practical sign-detection Newton’s method is proposed. Numerical examples show that the new methods are efficient and accelerate the convergence performance with higher precision and less CPU time than the existing modulus-based matrix splitting iteration method and the projection-based matrix splitting iteration method, especially for the large sparse problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Murty, K.G.: Linear Complementarity. Linear and Nonlinear Programming. Heldermann, Berlin (1988)

    MATH  Google Scholar 

  2. Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. SIAM Publisher, Philadelphia (2009)

    Book  MATH  Google Scholar 

  3. Ferris, M.C., Pang, J.-S.: Engineering and economic applications of complementarity problems. SIAM Rev. 39, 669–713 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Harker, P.T., Pang, J.-S.: Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications. Math. Program. 48, 161–220 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bai, Z.-Z.: The monotone convergence of a class of parallel nonlinear relaxation methods for nonlinear complementarity problems. Comput. Math. Appl. 31, 17–33 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bai, Z.-Z.: New comparison theorem for the nonlinear multisplitting relaxation method for the nonlinear complementarity problems. Comput. Math. Appl. 32, 41–48 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bai, Z.-Z., Wang, D.-R.: A class of parallel nonlinear multisplitting relaxation methods for the large sparse nonlinear complementarity problems. Comput. Math. Appl. 32, 79–95 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bai, Z.-Z.: Asynchronous parallel nonlinear multisplitting relaxation methods for the large sparse nonlinear complementarity problems. Appl. Math. Comput. 92, 85–100 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bai, Z.-Z.: A class of asynchronous parallel nonlinear accelerated overrelaxation methods for the nonlinear complementarity problem. J. Comput. Appl. Math. 93, 35–44 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. van Bokhoven, W.M.G.: Piecewise-Linear Modelling and Analysis. Proefschrift, Eindhoven (1981)

    Google Scholar 

  11. Bai, Z.-Z.: Modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 17, 917–933 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, W.: A general modulus-based matrix splitting method for linear complementarity problems of \(H\)-matrices. Appl. Math. Lett. 26, 1159–1164 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dong, J.-L., Jiang, M.-Q.: A modified modulus method for symmetric positive-definite linear complementarity problems. Numer. Linear Algebra Appl. 16, 129–143 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hadjidimos, A., Tzoumas, M.: Nonstationary extrapolated modulus algorithms for the solution of the linear complementarity problem. Linear Algebra Appl. 431, 197–210 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bai, Z.-Z., Zhang, L.-L.: Modulus-based synchronous multisplitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 20, 425–439 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bai, Z.-Z., Zhang, L.-L.: Modulus-based synchronous two-stage multisplitting iteration methods for linear complementarity problems. Numer. Algorithms 62, 59–77 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhang, L.-L.: Two-step modulus based matrix splitting iteration for linear complementarity problems. Numer. Algorithms 57, 83–99 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhang, L.-L.: Two-step modulus-based synchronous multisplitting iteration methods for linear complementarity problems. J. Comput. Math. 33, 100–112 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhang, L.-L.: Two-stage multisplitting iteration methods using modulus-based matrix splitting as inner iteration for linear complementarity problems. J. Optim. Theory Appl. 160, 189–203 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang, L.-L., Ren, Z.-R.: Improved convergence theorems of modulus-based matrix splitting iteration methods for linear complementarity problems. Appl. Math. Lett. 26, 638–642 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zheng, H., Vong, S.: Improved convergence theorems of the two-step modulus-based matrix splitting and synchronous multisplitting iteration methods for solving linear complementarity problems. Linear Multilinear Algebra (2018). https://doi.org/10.1080/03081087.2018.1470602

    Google Scholar 

  22. Zheng, N., Yin, J.-F.: Accelerated modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Algorithms 64, 245–262 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, S.-M., Zheng, H., Li, W.: A general accelerated modulus-based matrix splitting iteration method for solving linear complementarity problems. Calcolo 53, 189–199 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zheng, H., Li, W.: The modulus-based nonsmooth Newton’s method for solving linear complementarity problems. J. Comput. Appl. Math. 288, 116–126 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, W., Zheng, H.: A preconditioned modulus-based iteration method for solving linear complementarity problems of \(H\)-matrices. Linear Multilinear Algebra 64, 1390–1403 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zheng, H., Li, W., Vong, S.: A relaxation modulus-based matrix splitting iteration method for solving linear complementarity problems. Numer. Algorithms 74, 137–152 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Bai, Z.-Z.: A class of two-stage iterative methods for systems of weakly nonlinear equations. Numer. Algorithms 14, 295–319 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Bai, Z.-Z., Migallón, V., Penadés, J., Szyld, D.B.: Block and asynchronous two-stage methods for mildly nonlinear systems. Numer. Math. 82, 1–20 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xia, Z.-C., Li, C.-L.: Modulus-based matrix splitting iteration methods for a class of nonlinear complementarity problem. Appl. Math. Comput. 271, 34–42 (2015)

    MathSciNet  Google Scholar 

  30. Huang, N., Ma, C.-F.: The modulus-based matrix splitting algorithms for a class of weakly nonlinear complementarity problems. Numer. Linear Algebra Appl. 23, 558–569 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Noor, M.: Fixed point approach for complementarity problems. J. Comput. Appl. Math. 133(2), 437–448 (1988)

    MathSciNet  MATH  Google Scholar 

  32. De Luca, T., Facchinei, F., Kanzow, C.: A semismooth equation approach to the solution of nonlinear complementarity problems. Math. Program. 75, 407–439 (1996)

    MathSciNet  MATH  Google Scholar 

  33. Zheng, H.: Improved convergence theorems of modulus-based matrix splitting iteration method for nonlinear complementarity problems of \(H\)-matrices. Calcolo 54, 1481–1490 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Xie, S.-L., Xu, H.-R., Zeng, J.-P.: Two-step modulus-based matrix splitting iteration method for a class of nonlinear complementarity problems. Linear Algebra Appl. 494, 1–10 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zheng, H., Liu, L.: A two-step modulus-based matrix splitting iteration method for solving nonlinear complementarity problems of \(H_+\)-matrices. Comput. Appl. Math. (2018). https://doi.org/10.1007/s40314-018-0646-y

    MathSciNet  MATH  Google Scholar 

  36. Ma, C.-F., Huang, N.: Modified modulus-based matrix splitting algorithms for aclass of weakly nondifferentiable nonlinear complementarity problems. Appl. Numer. Math. 108, 116–124 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Li, R., Yin, J.-F.: Accelerated modulus-based matrix splitting iteration methods for a restricted class of nonlinear complementarity problems. Numer. Algorithms 75, 339–358 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Berman, A., Plemmons, R.J.: Nonnegative Matrix in the Mathematical Sciences. SIAM Publisher, Philadelphia (1994)

    Book  MATH  Google Scholar 

  39. Bai, Z.-Z.: On the convergence of the multisplitting methods for the linear complementarity problem. SIAM J. Matrix Anal. Appl. 21, 67–78 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  40. Bai, Z.-Z., Dong, J.-L.: A modified damped Newton method for linear complementarity problems. Numer. Algorithms 42, 207–228 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. McShane, K.: Superlinearly convergent \(O(\sqrt{n}L)\)-iteration interior-point algorithms for LP and the monotone LCP. SIAM J. Optim. 4, 247–261 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  42. Monteiro, R., Wright, S.: Local convergence of interior-point algorithms for degenerate monotone LCP. Comput. Optim. Appl. 3, 131–155 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wright, S.: A path-following interior-point algorithm for linear and aquadratic problems. Ann. Oper. Res. 62, 103–130 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wright, S., Zhang, Y.: A superquadratic infeasible-interior-point method for linear complementarity problems. Math. Program. 73, 269–289 (1996)

    MathSciNet  MATH  Google Scholar 

  45. Ye, Y., Anstreicher, K.: On quadratic and \(O(\sqrt{n}L)\) convergence of a predictor–corrector algorithm for LCP. Math. Program. 62, 537–551 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zheng, H., Li, W., Qu, W.: A non-modulus linear method for solving the linear complementarity problem. Linear Algebra Appl. 495, 38–50 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  47. Elliott, C.M., Ockendon, I.R.: Weak and Variational Methods for Moving Boundary Problems, Research Notes in Mathematics, vol. 59. Pitman, London (1982)

    MATH  Google Scholar 

  48. Hoffmann, K.H., Zou, J.: Parallel solution of variational inequality problems with nonlinear source terms. IMA J. Numer. Anal. 16, 31–45 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  49. Meyer, G.H.: Free boundary problems with nonlinear source terms. Numer. Math. 43, 463–482 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  50. Sun, Z., Zeng, J.-P.: A monotone semismooth Newton type method for a class of complementarity problems. J. Comput. Appl. Math. 235, 1261–1274 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  51. Hestenes, M.R., Steifel, E.: Methods of conjugate gradient for solving linear systems. J. Res. Nat. Bur. Stand. 49, 409–436 (1952)

    Article  MathSciNet  Google Scholar 

  52. Saad, Y., Schultz, M.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their helpful comments. The work was supported by the National Natural Science Foundation of China (Grant No. 11601340) and the Science Foundation of Shaoguan University (Grant No. SY2016KJ15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Zheng.

Additional information

Communicated by Suliman S. Al-Homidan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, H., Liu, L. The Sign-Based Methods for Solving a Class of Nonlinear Complementarity Problems. J Optim Theory Appl 180, 480–499 (2019). https://doi.org/10.1007/s10957-018-1361-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-018-1361-y

Keywords

Mathematics Subject Classification

Navigation