Proximal Point Method for Locally Lipschitz Functions in Multiobjective Optimization of Hadamard Manifolds

  • Glaydston de C. Bento
  • João Xavier da Cruz Neto
  • Lucas V. de Meireles


A proximal point method for nonsmooth multiobjective optimization in the Riemannian context is proposed, and an optimality condition for multiobjective problems is introduced. This allowed replacing the classic approach, via “scalarization,” by a purely vectorial and considering the method without any assumption of convexity over the constraint sets that determine the vectorial improvement steps. The main convergence result ensures that each cluster point (if any) of any sequence generated by the method is a Pareto critical point. Moreover, when the problem is convex on a Hadamard manifold, full convergence of the method for a weak Pareto optimal is obtained.


Multiobjective optimization Hadamard manifold Proximal method 

Mathematics Subject Classification

90C29 90C30 49M30 


  1. 1.
    Jahn, J.: Vector Optimization-Theory, Applications, and Extensions. Springer, Berlin (2004)zbMATHGoogle Scholar
  2. 2.
    Bonnel, H., Iusem, A.N., Svaiter, B.F.: Proximal methods in vector optimization. SIAM J. Optim. 15(4), 953–970 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bento, G.C., Ferreira, O.P., Pereira, Y.R.: Proximal point method for vector optimization on Hadamard manifolds. Oper. Res. Lett. 46(1), 13–18 (2018)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bento, G.C., Cruz Neto, J.X., Soubeyran, A.: A proximal point-type method for multicriteria optimization. Set Valued Var. Anal. 22(3), 557–573 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Rockafellar, R.T.: Favorable classes of Lipschitz continuous functions in subgradient optimization. In: Nurminski, E. (ed.) Nondifferentiable Optimization. Pergamon Press, New York (1982)Google Scholar
  6. 6.
    Spingarn, J.E.: Submonotone mappings and the proximal point algorithm. Numer. Funct. Anal. Optim. 4, 123–150 (1981–1982)Google Scholar
  7. 7.
    Kaplan, A., Tichatschke, R.: Proximal point methods and nonconvex optimization. J. Glob. Optim. 13, 389–406 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Pennanen, T.: Local convergence of the proximal point algorithm and multiplier methods without monotonicity. Math. Oper. Res. 27, 193–202 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bento, G.C., Ferreira, O.P., Oliveira, P.R.: Local convergence of the proximal point method for a special class of nonconvex functions on Hadamard manifolds. Nonlinear Anal. 73, 564–572 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bento, G.C., Ferreira, O.P., Oliveira, P.R.: Proximal point method for a special class of nonconvex functions on Hadamard manifolds. Optimization 64(2), 289–319 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Grohs, P., Hosseini, S.: \(\varepsilon \)-subgradient algorithms for locally Lipschitz functions on Riemannian manifolds. Adv. Comput. Math. 42(2), 333–360 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Papa Quiroz, E.A., Oliveira, P.R.: Proximal point method for minimization quasiconvex locally Lipschitz functions on Hadamard manifolds. Nonlinear Anal. 75, 5924–5932 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Minami, M.: Weak Pareto-optimal necessary conditions in a nondifferentiable multiobjective program on a Banach space. J. Optim. Theory Appl. 41(3), 451–461 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ledyaev, Y.S., Zhu, Q.J.: Nonsmooth analysis on smooth manifolds. Trans. Am. Math. Soc. 359(8), 3687–3732 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Li, C., Mordukhovich, B.S., Wang, J., Yao, J.C.: Weak sharp minima on Riemannian manifolds. SIAM J. Optim. 21(4), 1523–1560 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Vinter, R.B.: Optimal Control. Birkhauser, Basel (2000)zbMATHGoogle Scholar
  17. 17.
    Ekeland, I.: Nonconvex minimization problems. Bull. Am. Math. Soc. (N.S.) 1(3), 443–474 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Bento, G.C., Cruz Neto, J.X.: A subgradient method for multiobjective optimization on Riemannian manifolds. J. Optim. Theory Appl. 159(1), 125–137 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Huang, X.X., Yang, X.Q.: Duality for multiobjective optimization via nonlinear Lagrangian functions. J. Optim. Theory Appl. 120(1), 111–127 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Luc, D.T.: Theory of Vector Optimization, Lecture Notes in Economics and Mathematical Systems, vol. 319. Springer, Berlin (1989)Google Scholar
  21. 21.
    Bento, G.C., Ferreira, O.P., Oliveira, P.R.: Unconstrained steepest descent method for multicriteria optimization on Riemannian manifolds. J. Optim. Theory Appl. 154, 88–107 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Ceng, L.C., Yao, J.C.: Approximate proximal methods in vector optimization. Eur. J. Oper. Res. 183(1), 1–19 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Ferreira, O.P., Oliveira, P.R.: Proximal point algorithm on Riemannian manifolds. Optimization 51(2), 257–270 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Udriste, C.: Convex Functions and Optimization Methods on Riemannian Manifolds, Mathematics and Its Applications, vol. 297. Kluwer Academic Publishers Group, Dordrecht (1994)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.IMEUniversidade Federal de GoiásGoiâniaBrazil
  2. 2.Universidade Federal do PiauíTeresinaBrazil

Personalised recommendations