Skip to main content
Log in

Time Optimal Control of a System Governed by Non-instantaneous Impulsive Differential Equations

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We investigate time optimal control of a system governed by a class of non-instantaneous impulsive differential equations in Banach spaces. We use an appropriate linear transformation technique to transfer the original impulsive system into an approximate one, and then we prove the existence and uniqueness of their mild solutions. Moreover, we show the existence of optimal controls for Meyer problems of the approximate. Further, in order to solve the time optimal control problem for the original system, we construct a sequence of Meyer approximations for which the desired optimal control and optimal time are well derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bainov, D.D., Simeonov, P.S.: Theory of Impulsive Differential Equations, vol. World Scientific. Series on Advances in Mathematics for Applied Sciences, Singapore (1995)

    Book  MATH  Google Scholar 

  2. Samoilenko, A.M., Perestyuk, N.A., Chapovsky, Y.: Impulsive Differential Equations. World Scientific, Singapore (1995)

    Book  Google Scholar 

  3. Benchohra, M., Henderson, J., Ntouyas, S.K.: Impulsive Differential Equations and Inclusions. Hindawi Publishing Corporation, New York (2006)

    Book  MATH  Google Scholar 

  4. Wang, J., Fečkan, M., Zhou, Y.: A survey on impulsive fractional differential equations. Fract. Calc. Appl. Anal. 19, 806–831 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Wang, J., Fečkan, M., Zhou, Y.: Fractional order differential switched systems with coupled nonlocal initial and impulsive conditions. Bull. Sci. Math. 141, 727–746 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hernández, E., O’Regan, D.: On a new class of abstract impulsive differential equations. Proc. Am. Math. Soc. 141, 1641–1649 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hernández, E., Pierri, M., O’Regan, D.: On abstract differential equations with non instantaneous impulses. Topol. Meth. Nonlinear Anal. 46, 1067–1085 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Abbas, S., Benchohra, M., Darwish, M.A.: New stability results for partial fractional differential inclusions with not instantaneous impulses. Frac. Calc. Appl. Anal. 18, 172–191 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Abbas, S., Benchohra, M.: Uniqueness and Ulam stabilities results for partial fractional differential equations with not instantaneous impulses. Appl. Math. Comput. 257, 190–198 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Agarwal, R., O’Regan, D., Hristova, S.: Monotone iterative technique for the initial value problem for differential equations with non-instantaneous impulses. Appl. Math. Comput. 298, 45–56 (2017)

    MathSciNet  MATH  Google Scholar 

  11. Agarwal, R., Hristova, S., O’Regan, D.: Noninstantaneous impulses in Caputo fractional differential equations and practical stability via Lyapunov functions. J. Frankl. Inst. 354, 3097–3119 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Agarwal, R., O’Regan, D., Hristova, S.: Non-instantaneous impulses in Caputo fractional differential equations. Frac. Calc. Appl. Anal. 20, 595–622 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Bai, L., Nieto, J.J.: Variational approach to differential equations with not instantaneous impulses. Appl. Math. Lett. 73, 44–48 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bai, L., Nieto, J.J., Wang, X.: Variational approach to non-instantaneous impulsive nonlinear differential equations. J. Nonlinear Sci. Appl. 10, 2440–2448 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang, J., Fečkan, M.: A general class of impulsive evolution equations. Topol. Meth. Nonlinear Anal. 46, 915–934 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Wang, J.: Stability of noninstantaneous impulsive evolution equations. Appl. Math. Lett. 73, 157–162 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang, J., Fečkan, M., Tian, Y.: Stability analysis for a general class of non-instantaneous impulsive differential equations. Mediterr. J. Math. 14, 1–21 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Yang, D., Wang, J., O’Regan, D.: Asymptotic properties of the solutions of nonlinear non-instantaneous impulsive differential equations. J. Frankl. Inst. 354, 6978–7011 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yang, D., Wang, J., O’Regan, D.: On the orbital Hausdorff dependence of differential equations with non-instantaneous impulses. C. R. Acad. Sci. Paris, Ser. I 356, 150–171 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, S., Wang, J., Zhou, Y.: Optimal control of noninstantaneous impulsive differential equations. J. Frankl. Inst. 354, 7668–7698 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, S., Wang, J.: Optimal controls of systems governed by semilinear fractional differential equations with noninstantaneous impulses. J. Optim. Theory Appl. 174, 455–473 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ahmed, N.U., Teo, K.L.: Optimal Control of Distribute Parameter Systems. Elsevier North Holland, New York (1981)

    Google Scholar 

  23. Fattorini, H.O.: Time-optimal control of solutions of operational differential equations. J. Soc. Ind. Appl. Math. Ser. A Control 2, 54–59 (1964)

    Article  MATH  Google Scholar 

  24. LaSalle, J.P.: The Time Optimal Control Problem. Contributions to the Theory of Nonlinear Oscillations. Princeton University Press, Princeton (1960)

    Google Scholar 

  25. Li, X., Yong, J.: Optimal Control Theory for Infinite Dimensional Systems. Birkhauser, Boston (1995)

    Book  Google Scholar 

  26. Wang, J., Xiang, X., Wei, W.: The constructive approach on existence of time optimal controls of system governed by nonlinear equations on Banach spaces. Electron. J. Qual. Theo. Differ. Eq. 45, 1–10 (2009)

    MathSciNet  MATH  Google Scholar 

  27. Debbouche, A., Nieto, J.J., Torres, D.F.M.: Optimal solutions to relaxation in multiple control problems of Sobolev type with nonlocal nonlinear fractional differential equations. J. Optim. Theory Appl. 174, 7–31 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, J., Fečkan, M., Zhou, Y.: Relaxed controls for nonlinear fractional impulsive evolution equations. J. Optim. Theory Appl. 156, 13–32 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zeidler, E.: Nonlinear Functional Analysis and Its Application II: Monotone Operators. Springer, New York (1990)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Number 11661016), Training Object of High Level and Innovative Talents of Guizhou Province ((2016)4006) and Unite Foundation of Guizhou Province ([2015]7640); the Slovak Research and Development Agency (Grant Number APVV-14-0378) and the Slovak Grant Agency VEGA (Grant Numbers 2/0153/16 and 1/0078/17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinRong Wang.

Additional information

Communicated by Irena Lasiecka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Fečkan, M. & Debbouche, A. Time Optimal Control of a System Governed by Non-instantaneous Impulsive Differential Equations. J Optim Theory Appl 182, 573–587 (2019). https://doi.org/10.1007/s10957-018-1313-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-018-1313-6

Keywords

Mathematics Subject Classification

Navigation