Optimization of Fishing Strategies in Space and Time as a Non-convex Optimal Control Problem


The behavior of a fishing fleet and its impact onto the biomass of fish can be described by a nonlinear parabolic diffusion–reaction equation. Looking for an optimal fishing strategy leads to a non-convex optimal control problem with a bilinear control action. In this work, we present such an optimal control formulation, prove its well-posedness and derive first- and second-order optimality conditions. These results provide a basis for tailored finite element discretization as well as for Newton type optimization algorithms. First numerical test problems show typical features as so-called No-Take-Zones and maximal fishing quota (total allowable catches) as parts of an optimal fishing strategy.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2


  1. 1.

    FAO Fisheries Department. The State of World Fisheries and Aquaculture-2016 (SOFIA). FAO, Rome (2016)

  2. 2.

    Pauly, D., Zeller, D.: Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining. Nature Communications 7, article number 10244 (2016)

  3. 3.

    Quaas, M.F., Reusch, T.B.H., Schmidt, J.O., Tahvonen, O., Voss, R.: It is the economy, stupid! projecting the fate of fish populations using ecological-economic modeling. Glob. Change Biol. 22(1), 264–270 (2016)

    Article  Google Scholar 

  4. 4.

    Wilen, J.: Renewable resource economists and policy: What differences have we made? J. Environ. Econ. Manag. 39, 306–327 (2000)

    Article  MATH  Google Scholar 

  5. 5.

    Clark, C.W.: Mathematical Bioeconomics, 3rd edn. Wiley, New York (2010)

    Google Scholar 

  6. 6.

    Brock, W., Xepapadeas, A.: Diffusion-induced instability and pattern formation in infinite horizon recursive optimal control. J. Econ. Dyn. Control 32(9), 2745–2787 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Brock, W., Xepapadeas, A.: Pattern formation, spatial externalities and regulation in coupled economic-ecological systems. J. Environ. Econ. Manag. 59(2), 149–164 (2010)

    Article  MATH  Google Scholar 

  8. 8.

    Neubert, M.G.: Marine reserves and optimal harvesting. Ecol. Lett. 6, 843–849 (2003)

    Article  Google Scholar 

  9. 9.

    Ding, W., Lenhart, S.: Optimal harvesting of a spatial explicit fishery model. Nat. Resour. Model. 22(2), 173–211 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Bressan, A., Coclite, G.M., Shen, W.: An optimal harvesting problem. SIAM J. Control Optim. 51(2), 1186–1202 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Joshi, H.R., Lenhart, S.: Solving a parabolic identification problem by optimal control methods. Houst. J. Math. 30(4), 1219–1242 (2004)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Joshi, H.R., Herrera, G.E., Lenhart, S., Neubert, M.G.: Optimal dynamic harvest of a mobile renewable resource. Nat. Resour. Model. 22(2), 322–343 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Coclite, G.M., Garavello, M.: A time-depending optimal harvesting problem with measure-valued solutions. SIAM J. Control Optim. 55(2), 913–935 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Kelly Jr., M.R., Xing, Y., Lenhart, S.: Optimal fish harvesting for a population model by a nonlinear parabolic partial differential equation. Nat. Resour. Model. 29(1), 36–70 (2016)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Stadler, G.: Elliptic optimal control problems with \(L^1\)-control cost and applications for the placement of control devices. Comput. Optim. Appl. 44(2), 159–181 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Ito, K., Kunisch, K.: Lagrange Multiplier Approach to Variational Problems and Applications, pp. xvi+341. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2008)

  17. 17.

    Ulbrich, M.: On a nonsmooth Newton method for nonlinear complementarity problems in function space with applications to optimal control. In: Ferris, M.C., Mangasarian, O.L., Pang, J.-S. (eds.) Complementarity: Applications, Algorithms and Extensions, pp. 341–360. Kluwer Academic Publishers, Dordrecht (2001)

    Google Scholar 

  18. 18.

    Kröner, A., Vexler, B.: A priori error estimates for elliptic optimal control problems with a bilinear state equation. J. Comput. Appl. Math. 230(2), 781–802 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Neitzel, I., Vexler, B.: A priori error estimates for space-time finite element discretization of semilinear parabolic optimal control problems. Numer. Math. 120(2), 345–386 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications, pp. xx+313. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA. Reprint of the 1980 original (2000)

  21. 21.

    Wachsmuth, D.: The regularity of the positive part of functions in \(L^2(I; H^1(\varOmega ))\cap H^1(I; H^1(\varOmega )^*)\) with applications to parabolic equations. Comm. Math. Univ. Carol. 57(3), 327–332 (2016)

    MATH  Google Scholar 

  22. 22.

    Raymond, J.P., Zidani, H.: Hamiltonian Pontryagin’s principles for control problems governed by semilinear parabolic equations. Appl. Math. Optim. 39, 143–177 (1999)

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    Simon, J.: Compact sets in the space \(L^p(0, T;B)\). Ann. Mat. Pura Appl. 146, 65–96 (1986)

    Article  Google Scholar 

  24. 24.

    Evans, R.A., Fournier, J.J.F.: Sobolev Spaces, Pure and Applied Mathematics, vol. 140, 2nd edn. Academic Press, London (2003)

    Google Scholar 

  25. 25.

    Troeltzsch, F.: Optimale Steuerung Partieller Differentialgleichungen, 2nd edn. Vieweg-Teubner, Braunschweig (2009)

    Google Scholar 

  26. 26.

    Becker, R., Meidner, D., Vexler, B.: Efficient numerical solution of parabolic optimization problems by finite element methods. Optim. Methods Softw. 22(5), 813–833 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  27. 27.

    Casas, E., Tröltzsch, F.: A general theorem on error estimates with application to a quasilinear elliptic optimal control problem. Comput. Optim. Appl. 53(1), 173–206 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  28. 28.

    Casas, E., Tröltzsch, F.: Second order analysis for optimal control problems: improving results expected from abstract theory. SIAM J. Optim. 22(1), 261–279 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  29. 29.

    Sanchirico, J., Wilen, J.: A bioeconomic model of marine reserve creation. J. Environ. Econ. Manag. 42, 257–276 (2001)

    Article  MATH  Google Scholar 

Download references


This work was supported by the German Science Foundation (DFG) through the Excellence Cluster Future Ocean by project number CP 1336. This support is gratefully acknowledged.

Author information



Corresponding author

Correspondence to Malte Braack.

Additional information

Communicated by Stefan Ulbrich.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Braack, M., Quaas, M.F., Tews, B. et al. Optimization of Fishing Strategies in Space and Time as a Non-convex Optimal Control Problem. J Optim Theory Appl 178, 950–972 (2018). https://doi.org/10.1007/s10957-018-1304-7

Download citation


  • Fishing strategies
  • Optimal control
  • Non-convex optimization

Mathematics Subject Classification

  • 35K20
  • 35K45
  • 35K57
  • 49K20
  • 49K40
  • 65M60