Skip to main content
Log in

Well Posedness and Inf-Convolution

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We prove that the notion of Tykhonov well-posed problems is stable under the operation of inf-convolution. We deal with lower semicontinuous functions (not necessarily convex) defined on a metric magma. Several applications are given, in particular to the study of the map \(\arg \min \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McShane, E.: Extension of range of functions. Bull. Am. Math. Soc. 40(12), 837–842 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  2. Moreau, J.J: Fonctionnelles convexes. Séminaire Jean Leray 2, 1–108 (1966–1967)

  3. Moreau, J.J.: Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. Fr. 93, 273–299 (1965)

    Article  MATH  Google Scholar 

  4. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1997)

    MATH  Google Scholar 

  5. Strömberg, T.: The operation of infimal convolution. Diss. Math. 352, 1–58 (1996)

    MathSciNet  MATH  Google Scholar 

  6. Azagra, D., Ferrera, J.: Regularization by sup-inf convolutions on Riemannian manifolds: an extension of Lasry–Lions theorem to manifolds of bounded curvature. J. Math. Anal. Appl. 423(2), 994–1024 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hiriart-Urruty, J.-B., Lemarechal, C.: Fundamentals of Convex Analysis. Grundlehren Text Editions. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  8. Zagrodny, D.: The cancellation law for inf-convolution of convex functions. Studia Math. 110(3), 271–282 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bachir, M.: A Banach–Stone type theorem for invariant metric groups. Topol. Appl. 209, 189–197 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bachir, M.: Representation of isometric isomorphisms between monoids of Lipschitz functions. Methods Funct. Anal. Topol. 23(4), 309–319 (2017)

    MathSciNet  Google Scholar 

  11. Bachir, M.: The inf-convolution as a law of monoid. An analogue to the Banach–Stone theorem. J. Math. Anal. Appl. 420(1), 145–166 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Deville, R., Godefroy, G., Zizler, V.: A smooth variational principle with applications to Hamilton–Jacobi equations in infinite dimensions. J. Funct. Anal. 111, 197–212 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Deville, R., Godefroy, G., Zizler, V.: Smoothness and renormings in Banach spaces. In: Pitman Monographs No. 64. Longman, London (1993)

  14. Deville, D., Revalski, J.P.: Porosity of ill-posed problems. Proc. Am. Math. Soc. 128, 1117–1124 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Klee, V.L.: Invariant metrics in groups (solution of a problem of Banach). Proc. Am. Math. Soc. 3, 484–487 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  16. Phelps, R.R.: Convex Functions, Monotone Operators and Differentiability. Lecture Notes in Mathematics, vol. 1364. Springer, Berlin (1993)

    Google Scholar 

  17. Finet, C., Quarta, L., Troestler, C.: Vector-valued variational principles. Nonlinear Anal. 52, 197–218 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hiriart-Urruty, J.-B., Mazure, M.L.: Formulation variationnelles de l’addition parallles d’oprateurs semi-definies positifs. CR Acad. Sci. Paris Ser. I Math. 302, 527–530 (1986)

    MATH  Google Scholar 

  19. Mazure, M.L.: Equations de convolution et formes quadratiques. Ann. Mat. Pura Appl. 158, 75–97 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous referees for their helpful comments involving the following version of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Bachir.

Additional information

Communicated by Julian P. Revalski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bachir, M. Well Posedness and Inf-Convolution. J Optim Theory Appl 177, 271–290 (2018). https://doi.org/10.1007/s10957-018-1286-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-018-1286-5

Keywords

Mathematics Subject Classification

Navigation