Advertisement

Stability Property in Bifunction-Set Optimization

  • Pham Huu Sach
Article
  • 144 Downloads

Abstract

This paper gives sufficient conditions for the lower and upper semicontinuities of the solution mapping of a model, called the parametric bifunction-set optimization problem, which provides a bridge between several parametric set optimization problems and parametric generalized vector Ky Fan inequality problems. Our main theorems, applied to the just mentioned problems, give some new or sharper results.

Keywords

Bifunction-set optimization Set optimization Ky Fan inequality Set-valued map Semicontinuity 

Mathematics Subject Classification

90C29 49J40 49K40 

Notes

Acknowledgements

The author would like to thank the anonymous referees for their suggestions, that improved the paper. This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. 101.01-2017.08.

Compliance with Ethical Standards

Conflict of Interest

The author declares that he has no conflict of interest.

References

  1. 1.
    Kuroiwa, D.: On set-valued optimization. Nonlinear Anal. 47, 1395–1400 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Kuroiwa, D.: Existence theorems of set optimization with set-valued maps. J. Inf. Optim. Sci. 24, 73–84 (2003)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Alonso, M., Rodriguez-Marin, L.: Set-relations and optimality conditions in set-valued maps. Nonlinear Anal. 63, 1167–1179 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Hernandez, E., Rodriguez-Marin, L.: Existence theorems for set optimization problems. Nonlinear Anal. 67, 1726–1736 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Hernandez, E., Rodriguez-Marin, L.: Nonconvex scalarization in set optimization with set-valued maps. J. Math. Anal. Appl. 325, 1–18 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Xu, Y.D., Li, S.J.: Continuity of the solution set mappings to a parametric set optimization problem. Optim. Lett. 8, 2315–2327 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Xu, Y.D., Li, S.J.: On the solution continuity of parametric set optimization problems. Math. Methods Oper. Res. 84, 223–237 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Fan, K.: A minimax inequality and its applications. In: Shisha, O. (ed.) Inequalities III, pp. 103–113. Academic Press, New York (1972)Google Scholar
  9. 9.
    Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123–145 (1994)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Sach, P.H., Tuan, L.A.: Lower semicontinuity results in parametric multivalued weak vector equilibrium problems and applications. Numer. Funct. Anal. Appl. 37, 753–785 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gong, X.H.: Continuity of the solution set to parametric vector equilibrium problems. J. Optim. Theory Appl. 139, 35–46 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Chen, C.R., Li, S.J., Teo, K.L.: Solution semicontinuity of parametric generalized vector equilibrium problems. J. Glob. Optim. 45, 309–318 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Li, S.J., Liu, H.M., Chen, C.R.: Lower semicontinuity of parametric generalized weak vector equilibrium problems. Bull. Austral. Math. Soc. 81, 85–95 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Li, S.J., Fang, Z.M.: Lower semicontinuity of the solution mappings to parametric generalized Ky Fan inequality. J. Optim. Theory Appl. 147, 507–515 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Peng, Z.Y., Yang, X.M., Peng, J.W.: On the lower semicontinuity of the solution mappings to parametric weak generalized Ky Fan inequality. J. Optim. Theory Appl. 152, 256–264 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Chen, B., Huang, N.-J.: Continuity of the solution mapping to parametric generalized vector Ky Fan inequality problem. J. Glob. Optim. 56, 1515–1528 (2013)CrossRefzbMATHGoogle Scholar
  17. 17.
    Gong, X.H., Yao, J.C.: Lower semicontinuity of the set of efficient solutions for generalized systems. J. Optim. Theory Appl. 138, 197–205 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Li, S.J., Liu, H.M., Zhang, Y., Fang, Z.M.: Continuity of the solution mappings to parametric generalized strong vector equilibrium problems. J. Glob. Optim. 55, 597–610 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Xu, Y.D., Li, S.J.: On the lower semicontinuity of the solution mappings to a parametric generalized strong vector equilibrium problems. Positivity 17, 341–353 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Sach, P.H., Tuan, L.A.: New scalarizing approach to the stability analysis in parametric generalized Ky Fan inequality problems. J. Optim. Theory Appl. 157, 347–364 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Sach, P.H., Tuan, L.A.: Sensitivity in mixed generalized vector quasiequilibrium problems with moving cones. Nonlinear Anal. 73, 713–724 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Tuan, L.A., Lee, G.M., Sach, P.H.: Upper semicontinuity result for the solution mapping of a mixed parametric generalized vector quasiequilibrium problem with moving cones. J. Glob. Optim. 47, 639–660 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Anh, L.Q., Khanh, P.Q.: On the stability of the solution sets of general multivalued vector quasiequilibrium problems. J. Optim. Theory Appl. 135, 271–284 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Sach, P.H., Tuan, L.A., Lee, G.M.: Sensitivity results for a general class of generalized vector quasi-equilibrium problems with set-valued maps. Nonlinear Anal. 71, 571–586 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Sach, P.H.: Solution existence in bifunction-set optimization. J. Optim. Theory Appl. 176, 1–16 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Luc, D.T.: Theory of Vector Optimization. Springer, Berlin (1989)CrossRefGoogle Scholar
  27. 27.
    Gopfert, A., Riahi, H., Tammer, C., Zalinescu, C.: Variational Methods in Partially Ordered Spaces. Springer, New York (2003)zbMATHGoogle Scholar
  28. 28.
    Patrone, F., Pusillo, L., Tijs, S.: Multicriteria games and potentials. TOP 15, 138–145 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Chen, C.R., Xin, Z., Fang, L., Li, S.J.: Vector equilibrium problems under improvement sets and linear scalarization with stability applications. Optim. Methods Softw. 31, 1240–1257 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Khan, A.A., Tammer, C., Zalinescu, C.: Set-Valued Optimization. Springer, Berlin (2015)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of MathematicsVietnam Academy of Science and TechnologyHanoiVietnam

Personalised recommendations