Skip to main content
Log in

Epi-convergence: The Moreau Envelope and Generalized Linear-Quadratic Functions

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This work explores the class of generalized linear-quadratic functions, constructed using maximally monotone symmetric linear relations. Calculus rules and properties of the Moreau envelope for this class of functions are developed. In finite dimensions, on a metric space defined by Moreau envelopes, we consider the epigraphical limit of a sequence of quadratic functions and categorize the results. We examine the question of when a quadratic function is a Moreau envelope of a generalized linear-quadratic function; characterizations involving nonexpansiveness and Lipschitz continuity are established. This work generalizes some results by Hiriart-Urruty and by Rockafellar and Wets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Thank you to Dr. Walaa Moursi for contributing to this Proof.

References

  1. Moreau, J.J.: Proximité et dualité dans un espace Hilbertien. Bull. Soc. Math. Fr. 93, 273–299 (1965)

    Article  MATH  Google Scholar 

  2. Poliquin, R., Rockafellar, R.: Generalized Hessian properties of regularized nonsmooth functions. SIAM J. Optim. 6(4), 1121–1137 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Attouch, H., Wets, R.: Quantitative stability of variational systems: I. The epigraphical distance. Trans. Am. Math. Soc. 328, 695–729 (1991)

    MathSciNet  MATH  Google Scholar 

  4. Attouch, H.: Variational Convergence for Functions and Operators. Applicable Mathematics Series. Pitman, Boston (1984)

    MATH  Google Scholar 

  5. Cross, R.: Multivalued Linear Operators. Monographs and Textbooks in Pure and Applied Mathematics, vol. 213. Marcel Dekker Inc, New York (1998)

    MATH  Google Scholar 

  6. Bartz, S., Bauschke, H., Moffat, S., Wang, X.: The resolvent average of monotone operators: dominant and recessive properties. SIAM J. Optim. 26(1), 602–634 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bauschke, H., Wang, X., Yao, L.: Monotone linear relations: maximality and Fitzpatrick functions. J. Convex Anal. 16(3–4), 673–686 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Bauschke, H., Wang, X., Yao, L.: On Borwein–Wiersma decompositions of monotone linear relations. SIAM J. Optim. 20(5), 2636–2652 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Yao, L.: On Monotone Linear Relations and the Sum Problem in Banach Spaces. UBC Ph. D. thesis (2011)

  10. Lemaréchal, C., Sagastizábal, C.: Practical aspects of the Moreau–Yosida regularization: theoretical preliminaries. SIAM J. Optim. 7(2), 367–385 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rockafellar, R.: Convex Analysis. Princeton Landmarks in Mathematics. Princeton University Press, Princeton (1997)

    MATH  Google Scholar 

  12. Hiriart-Urruty, J.B.: The deconvolution operation in convex analysis: an introduction. Cybern. Syst. Anal. 30(4), 555–560 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Rockafellar, R., Wets, R.: Variational Analysis. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  14. Bauschke, H., Combettes, P.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)

    Book  MATH  Google Scholar 

  15. Borwein, J., Vanderwerff, J.: Convex Functions: Constructions, Characterizations and Counterexamples. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  16. Attouch, H., Beer, G.: On the convergence of subdifferentials of convex functions. Arch. Math. (Basel) 60(4), 389–400 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Burke, J., Hoheisel, T.: Epi-convergent smoothing with applications to convex composite functions. SIAM J. Optim. 23(3), 1457–1479 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rockafellar, R., Royset, J.: Random variables, monotone relations, and convex analysis. Math. Program. 148(1–2, Ser. B), 297–331 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wijsman, R.A.: Convergence of sequences of convex sets, cones and functions. II. Trans. Am. Math. Soc. 123, 32–45 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  20. Beer, G.: Topologies on Closed and Closed Convex Sets. Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht (1993)

    Book  MATH  Google Scholar 

  21. Planiden, C., Wang, X.: Strongly convex functions, Moreau envelopes and the generic nature of convex functions with strong minimzers. SIAM J. Optim. 26(2), 1341–1364 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bartz, S., Bauschke, H., Borwein, J., Reich, S., Wang, X.: Fitzpatrick functions, cyclic monotonicity and Rockafellar’s antiderivative. Nonlinear Anal. 66(5), 1198–1223 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Baillon, J.B., Haddad, G.: Quelques propriétés des opérateurs angle-bornés et \(n\)-cycliquement monotones. Isr. J. Math. 26(2), 137–150 (1977)

    Article  MATH  Google Scholar 

  24. Bauschke, H., Borwein, J., Wang, X., Yao, L.: The Brezis–Browder theorem in a general Banach space. J. Funct. Anal. 262(12), 4948–4971 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms II: Advanced Theory and Bundle Methods, vol. 306. Springer, Berlin (2013)

    MATH  Google Scholar 

  26. Meyer, C.: Matrix Analysis and Applied Linear Algebra. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2000)

    Book  Google Scholar 

  27. Mordukhovich, B.: Variational Analysis and Generalized Differentiation I: Basic Theory, vol. 330. Springer, Berlin (2006)

    Google Scholar 

  28. Roman, S.: Advanced Linear Algebra, vol. 3. Springer, Berlin (2005)

    MATH  Google Scholar 

  29. Beer, G.: Norms with infinite values. J. Convex Anal. 22(1), 35–58 (2015)

    MathSciNet  MATH  Google Scholar 

  30. Beer, G., Vanderwerff, J.: Structural properties of extended normed spaces. Set-Valued Var. Anal. 23(4), 613–630 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and the anonymous referee for their very helpful comments and suggestions for improvement of this manuscript. Chayne Planiden was supported by UBC University Graduate Fellowship and by Natural Sciences and Engineering Research Council of Canada. Xianfu Wang was partially supported by a Natural Sciences and Engineering Research Council of Canada Discovery Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianfu Wang.

Additional information

Communicated by Giuseppe Buttazzo.

Dedicated to the pioneers of epi-convergence: Attouch, Beer, Wets, ...

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Planiden, C., Wang, X. Epi-convergence: The Moreau Envelope and Generalized Linear-Quadratic Functions. J Optim Theory Appl 177, 21–63 (2018). https://doi.org/10.1007/s10957-018-1254-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-018-1254-0

Keywords

Mathematics Subject Classification

Navigation