Skip to main content
Log in

A Newton-Like Method for Variable Order Vector Optimization Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

A Newton approach is proposed for solving variable order smooth constrained vector optimization problems. The concept of strong convexity is presented, and its properties are analyzed. It is thus obtained that the Newton direction is well defined and that the algorithm converges. Moreover, the rate of convergence is obtained under ordering structures satisfying a mild hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bergstresser, K., Yu, P.L.: Domination structures and multicriteria problems in \(N\)-person games. Theory Decis. 8(1), 5–48 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  2. Yu, P.L.: Cone convexity, cone extreme points, and nondominated solutions in decision problems with multiobjectives. J. Optim. Theory Appl. 14, 319–377 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  3. Jahn, J.: Vector optimization. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  4. Ehrgott, M.: Multicriteria optimization, 2nd edn. Springer, Berlin (2005)

    MATH  Google Scholar 

  5. Baatar, D., Wiecek, M.M.: Advancing equitability in multiobjective programming. Comput. Math. Appl. 52(1–2), 225–234 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Engau, A.: Variable preference modeling with ideal-symmetric convex cones. J. Global Optim. 42(2), 295–311 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Wiecek, M.M.: Advances in cone-based preference modeling for decision making with multiple criteria. Decis. Mak. Manuf. Serv. 1(1–2), 153–173 (2007)

    MathSciNet  MATH  Google Scholar 

  8. Eichfelder, G.: Optimal elements in vector optimization with a variable ordering structure. J. Optim. Theory Appl. 151(2), 217–240 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eichfelder, G., Ha, T.X.D.: Optimality conditions for vector optimization problems with variable ordering structures. Optimization 62(5), 597–627 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eichfelder, G.: Variable ordering structures in vector optimization. Vector Optimization. Springer, Heidelberg (2014)

    Book  MATH  Google Scholar 

  11. Soleimani, B.: Characterization of approximate solutions of vector optimization problems with a variable order structure. J. Optim. Theory Appl. 162(2), 605–632 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Soleimani, B., Tammer, C.: Concepts for approximate solutions of vector optimization problems with variable order structures. Vietnam J. Math. 42(4), 543–566 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bao, T.Q., Mordukhovich, B.S., Soubeyran, A.: Fixed points and variational principles with applications to capability theory of wellbeing via variational rationality. Set Valued Var. Anal. 23(2), 375–398 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bao, T.Q., Mordukhovich, B.S., Soubeyran, A.: Variational analysis in psychological modeling. J. Optim. Theory Appl. 164(1), 290–315 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, X.B., Lin, Z., Peng, Z.Y.: Convergence for vector optimization problems with variable ordering structure. Optimization 65(8), 1615–1627 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bello Cruz, J.Y., Bouza Allende, G.: A steepest descent-like method for variable order vector optimization problems. J. Optim. Theory Appl. 162(2), 371–391 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fliege, J., Graña Drummond, L.M., Svaiter, B.F.: Newton’s method for multiobjective optimization. SIAM J. Optim. 20(2), 602–626 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Graña Drummond, L.M., Raupp, F.M.P., Svaiter, B.F.: A quadratically convergent Newton method for vector optimization. Optimization 63(5), 661–677 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Peressini, A.L.: Ordered topological vector spaces. Harper & Row Publishers, New York, London (1967)

    MATH  Google Scholar 

  20. Bertsekas, D.P.: Convex analysis and optimization. Athena Scientific, Belmont (2003)

    MATH  Google Scholar 

  21. Miettinen, K.: Nonlinear multiobjective optimization. International Series in Operations Research & Management Science, vol. 12. Kluwer Academic Publishers, Boston (1999)

    MATH  Google Scholar 

  22. Carrizo, G.A., Lotito, P.A., Maciel, M.C.: Trust region globalization strategy for the nonconvex unconstrained multiobjective optimization problem. Math. Program. 159(1–2, Ser A), 339–369 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Villacorta, K.D.V., Oliveira, P.R., Soubeyran, A.: A trust-region method for unconstrained multiobjective problems with applications in satisficing processes. J. Optim. Theory Appl. 160(3), 865–889 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author was partially supported by CNPq Grants 458479/2014-4 and 3122077/2014-9, the second author was partially supported by CAPES/FAPEG 10/2013 and 08/2014, and the third author was partially supported by CAPES, CAPES/MES/Cuba Project 226/2012 Optimization and Applications. The second author was also partially supported by Alexander von Humboldt Foundation during his stay at Martin Luther University, where part of this research was carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Rafael Leite Pereira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Carvalho Bento, G., Bouza Allende, G. & Pereira, Y.R.L. A Newton-Like Method for Variable Order Vector Optimization Problems. J Optim Theory Appl 177, 201–221 (2018). https://doi.org/10.1007/s10957-018-1236-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-018-1236-2

Keywords

Mathematics Subject Classification

Navigation