Skip to main content
Log in

Experimental Results of Optimal and Robust Control for Uncertain Linear Time-Delay Systems

  • Technical Note
  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper addresses the issue of the regulation of the dehydration air temperature in a dryer. The classical optimization approach is used to solve the optimal control problem for this kind of system because the linearized mathematical model involves the delay state. However, the presence in the model of nonlinear uncertainties, which satisfy the matching condition, is a reason to apply the Lyapunov redesign approach. It gives robustness to the optimal linear control, improving the closed-loop performance. Furthermore, the optimal–robust control algorithm was tested in a dehydration process. This is the first time that the optimal and the proposed optimal–robust controller has been applied in a real-time process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Krasovskii, N.N.: On the analytic construction of an optimal control in a system with time lags. J. Appl. Math. Mech. 26(1), 50–67 (1962)

    Article  MathSciNet  Google Scholar 

  2. Ross, D.W., Flügge-Lotz, I.: An optimal control problem for systems with differential-difference equation dynamics. SIAM J. Control 7(4), 609–623 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ross, D.W.: Controller design for time lag systems via a quadratic criterion. IEEE Trans. Autom. Control 16(6), 664–672 (1971)

    Article  Google Scholar 

  4. Uchida, K., Shimemura, E.: Closed-loop properties of the infinite-time linear-quadratic optimal regulator for systems with delays. Int. J. Control 43(3), 773–779 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Uchida, K., Shimemura, E., Abe, N.: Circle condition and stability margin of the optimal regulator for systems with delays. Int. J. Control 46(4), 1203–1212 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kim, A.V., Lozhnikov, A.B.: A linear-quadratic control problem for state-delay systems. Exact solutions for the Riccati equations. Autom. Rem. Control C/C Avtomatika i Telemekhanika 61(7;1), 1076–1090 (2000)

    MATH  Google Scholar 

  7. Santos, O., Mondié, S., Kharitonov, V.L.: Linear quadratic suboptimal control for time delays systems. Int. J. Control 82(1), 147–154 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kharitonov, V.L., Zhabko, A.P.: Lyapunov Krasovskii approach to the robust stability analysis of time-delay systems. Automatica 39(1), 15–20 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kirk, D.E.: Optimal control theory: an introduction. Courier Corporation, Chelmsford (2012)

    Google Scholar 

  10. Wu, H.S.: Sufficient conditions for robust stability of LQG optimal control systems including delayed perturbations. J Optim. Theory Appl. 96(2), 437–451 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kosmidou, O.I., Boutalis, Y.S.: A linear matrix inequality approach for guaranteed cost control of systems with state and input delays. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 36(5), 936–942 (2006)

    Article  Google Scholar 

  12. Lien, C.H.: Guaranteed cost output control for uncertain neutral systems with time-varying delays via LMI. Int. J. Syst. Sci. 37(10), 723–734 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lin, Y.C., Lin, C.L.: Optimal control approach for robust control design of neutral systems. Optim. Control Appl. Methods 30(1), 87–102 (2009)

    Article  MathSciNet  Google Scholar 

  14. Chuang, C.H., Lin, C.L., Lin, Y.C.: Robust optimal control of time delay systems based on Razumikhin theorem. Asian J. Control 14(5), 1431–1438 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ariola, M., Pironti, A.: H\(\infty \) optimal terminal control for linear systems with delayed states and controls. Automatica 44(10), 2676–2679 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Niamsupa, P., Phatb, V.N.: H\(\infty \) optimal control of linear time-varying systems with time-varying delay via a controllability approach. Sci. Asia 35, 284–289 (2009)

    Article  Google Scholar 

  17. Glizer, V.Y., Turetsky, V.: Optimal quadratic control of linear time delay systems: one approach to numerical solution. In: 11th IEEE International Conference on Control and Automation (ICCA), pp. 797–802. IEEE (2014)

  18. Erfani, A., Rezaei, S., Pourseifi, M., Derili, H.: Optimal control in teleoperation systems with time delay: a singular perturbation approach. J. Comput. Appl. Math. 338, 168–184 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Marzban, H.R., Hoseini, S.M.: Optimal control of linear multi-delay systems with piecewise constant delays. IMA J. Math. Control Inf. 35(1), 183–212 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Rodríguez-Guerrero, L., Santos-Sánchez, O.J., Cervantes-Escorcia, N., Romero, H.: Real-time discrete suboptimal control for systems with input and state delays: experimental tests on a dehydration process. ISA Trans. 71, 448–457 (2017)

    Article  Google Scholar 

  21. Khalil, H.K.: Nonlinear Systems. Prentice-Hall, New Jersey (1996)

    Google Scholar 

  22. Rodríguez-Guerrero, L., Mondié, S., Santos-Sánchez, O.: Guaranteed cost control using Lyapunov redesign for uncertain linear time delay systems. IFAC-PapersOnLine 48(12), 392–397 (2015)

    Article  Google Scholar 

  23. Rodríguez-Guerrero, L., Santos-Sánchez, O., Mondié, S.: A constructive approach for an optimal control applied to a class of nonlinear time delay systems. J. Process Control 40, 35–49 (2016)

    Article  Google Scholar 

  24. Santos-Sánchez, N.F., Salas-Coronado, R., Santos-Sánchez, O.J., Romero, H., Garrido-Aranda, E.: On the effects of the temperature control at the performance of a dehydration process: energy optimization and nutrients retention. Int. J. Adv. Manuf. Technol. 86(9–12), 3157–3171 (2016)

    Article  Google Scholar 

  25. Di Ferdinando, M., Pepe, P.: Robustification of sample-and-hold stabilizers for control-affine time-delay systems. Automatica 83, 141–154 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, Z., Wang, Q., Gao, H.: Control of friction oscillator by Lyapunov redesign based on delayed state feedback. Acta Mechanica Sinica 25(2), 257–264 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pepe, P.: On Sontag’s formula for the input-to-state practical stabilization of retarded control-affine systems. Syst. Control Lett. 62(11), 1018–1025 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by Conacyt-Mexico Project: 239371, and PRODEP-Mexico UAEH-PTC 776, 511-617-8021. The authors thank English Professor Carol Hayenga for her English revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar-Jacobo Santos-Sánchez.

Additional information

Communicated by Lars Grüne.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Labra, HA., Santos-Sánchez, OJ., Rodríguez-Guerrero, L. et al. Experimental Results of Optimal and Robust Control for Uncertain Linear Time-Delay Systems. J Optim Theory Appl 181, 1076–1089 (2019). https://doi.org/10.1007/s10957-018-01457-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-018-01457-9

Keywords

Mathematics Subject Classification

Navigation