Skip to main content
Log in

Second-Order Time and State-Dependent Sweeping Process in Hilbert Space

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Using an explicit catching-up algorithm, we prove the existence of absolutely continuous as well as bounded variation continuous solutions to a second-order perturbed Moreau’s sweeping process with the normal cone of a subsmooth moving set, which depends both on the time and on the state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Monteiro Marques, M.D.P.: Differential Inclusions in Nonsmooth Mechanical Problems, Shocks and Dry Friction. Birkhäuser, Basel (1993)

    Book  MATH  Google Scholar 

  2. Moreau, J.J.: Rafle par un convexe variable I. Sem. Anal. Convexe. Montpellier. exposé No. 15. (1971)

  3. Moreau, J.J.: Rafle par un convexe variable II. Sem. Anal. Convexe, Montpellier. exposé No. 3. (1972)

  4. Moreau, J.J.: Evolution problem associated with a moving convex set in a Hilbert Space. J. Differ. Equ. 26, 347–374 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  5. Castaing, C., Duc Ha, T.X., Valadier, M.: Evolution equations governed by the sweeping process. Set Valued Anal. 1, 109–139 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Castaing, C., Monteiro Marques, M.D.P.: Evolution problems associated with nonconvex closed moving sets with bounded variation. Port. Math. 53, 73–87 (1996)

    MathSciNet  MATH  Google Scholar 

  7. Colombo, G., Goncharov, V.V.: The sweeping processes without convexity. Set Valued Anal. 7, 357–374 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Edmond, J.F., Thibault, L.: Relaxation of an optimal control problem involving a perturbed sweeping process. Math. Program. Ser. B 104, 347–373 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Edmond, J.F., Thibault, L.: BV solutions of nonconvex sweeping process differential inclusion with perturbation. J. Differ. Equ. 226, 135–179 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jourani, A., Vilches, E.: Positively \(\alpha \)-far sets and existence results for generalized perturbed sweeping processes. J. Convex Anal. 23(3), 775–821 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Thibault, L.: Sweeping process with regular and nonregular sets. J. Differ. Equ. 193, 1–26 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Castaing, C.: Quelques problèmes d’évolution du second ordre. Sém. Anal. Convexe. Montpellier. Exposé No. 5. (1988)

  13. Bounkhel, M., Laouir-Azzam, D.: Existence results for second-order nonconvex sweeping processes. Set Valued Anal. 12(3), 291–318 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bounkhel, M.: General existence results for second-order non convex sweeping process with unbounded perturbations. Port. Math. 60(3), 269–304 (2003)

    MathSciNet  MATH  Google Scholar 

  15. Castaing, C., Ibrahim, A.G., Yarou, M.: Existence problems in second-order evolution inclusions: discretization and variational approch. Taiwan. J. Math. 12(6), 1433–1475 (2008)

    Article  MATH  Google Scholar 

  16. Azzam-Laouir, D., Izza, S.: Existence of solutions for second-order perturbed nonconvex sweeping process. Comput. Math. Appl. 62, 1736–1744 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Aliouane, F., Azzam-Laouir, D.: Second-order sweeping process with a Lipschitz perturbation. J. Math. Anal. Appl. 452, 729–746 (2017). https://doi.org/10.1016/j.jmaa.2018.11.007

    Article  MathSciNet  MATH  Google Scholar 

  18. Castaing, C., Ibrahim, A.G., Yarou, M.: Some contributions to nonconvex sweeping process. J. Nonlinear Convex Anal. 10(1), 1–20 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Adly, S., Le, B.K.: Unbounded second-order state-dependent Moreau’s sweeping processes in Hilbert spaces. J. Optim. Theory Appl. 169, 407–423 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Adly S., Nacry, F.: An existence result for discontinuous second-order nonconvex state-dependent sweeping process. Appl. Math. Optim. https://doi.org/10.1007/s00245-017-9446-9 (2017)

  21. Lounis, S., Haddad, T., Sene, M.: Non-convex second-order Moreau’ sweeping processes in Hilbert spaces. J. Fixed Point Theory Appl. 19(4), 2895–2908 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Noel, J.: Second-order general perturbed sweeping process differential inclusion. J. Fixed Point Theory Appl. 20, 133 (2018). https://doi.org/10.1007/s11784-018-0609-3

    Article  MathSciNet  MATH  Google Scholar 

  23. Haddad, T., Noel, J., Thibault, L.: Perturbed sweeping process with a subsmooth set depending on the state. J. Linear Nonlinear Anal. 2(1), 155–174 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Jourani, A., Vilches, E.: Moreau-Yosida regularization of state-dependent sweeping processes with nonregular sets. J. Optim. Theory Appl. 173, 91 (2017). https://doi.org/10.1007/s10957-017-1083-6

    Article  MathSciNet  MATH  Google Scholar 

  25. Adly, S., Le, B.K.: Unbounded state-dependent sweeping process with perturbations in uniformly convex and q-uniformly smooth Banach spaces. Numer. Algebra Control Optim. 8, 81–95 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Aliouane, F., Azzam-Laouir, D.: A second-order differential inclusion with proximal normal cone in Banach spaces. Topol. Methods Nonlinear Anal. 44(1), 143–160 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Bounkhel, M., Al-Yusof, R.: First and second-order convex sweeping processes in reflexive smooth Banach spaces. Set Valued Var. Anal. 18(2), 151–182 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Castaing, C., Marques, M.M., Raynaud de Fitte, P.: Second-order evolution problems with time dependent maximal monotone operator. In: Advances in Mathematical Economics, vol 23 (2018)

  29. Rockafellar, R.T.: Directionally Lipschitzian functions and subdifferential calculus. Proc. Lond. Math. Soc. 39, 331–355 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rockafellar, R.T., Wets, R.: Variational Analysis. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  31. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, Hoboken (1983)

    MATH  Google Scholar 

  32. Clarke, F.H., Stern, R.J., Wolenski, P.R.: Proximal smoothness and the lower-\(C^2\) property. J. Convex Anal. 2, 117–144 (1995)

    MathSciNet  MATH  Google Scholar 

  33. Mordukhovich, B.S., Shao, Y.: Nonsmooth sequential analysis in Asplund spaces. Trans. Am. Math. Soc. 4, 1235–1279 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  34. Poliquin, R.A., Rockafellar, R.T., Thibault, L.: Local differentiability of distance functions. Trans. Am. Math. Soc. 352, 5231–5249 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Aussel, D., Daniilidis, A., Thibault, L.: Subsmooth sets: functional characterizations and related concepts. Trans. Am. Math. Soc. 357, 1275–1301 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions. Lectures Notes in Mathematics. Springer, Berlin (1977)

    Book  MATH  Google Scholar 

  37. Dellacherie, C.: Ensembles analytiques, théorème de séparation et application. Séminaire de probabilités (Strasbourg) tome 9, 336–372 (1975)

    Google Scholar 

  38. Tolstonogov, A.A.: Differential Inclusions in a Banach Space. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  39. Azzam-Laouir, D., Belhoula, W., Castaing, C., Monteiro Marques, M.D.P.: Multi-valued perturbation to evolution problems involving time dependent maximal monotone operators. Evol Prob Control Theory (Submitted)

  40. Bernicot, F., Venel, J.: Existence of sweeping process in Banach spaces under directional prox-regularity. J. Convex Anal 17, 451–484 (2010)

    MathSciNet  MATH  Google Scholar 

  41. Aliouane, F.: Existence de solutions pour des inclusions différentielles du second ordre gouvernées par le cône proximal dans les espaces de dimension infinie. Ph.D. thesis, Université de Jijel, Algérie (2015)

  42. Adly, S., Haddad, T., Le, B.K.: State-dependent implicit sweeping process in the framework of quasistatic evolution quasi-variational inequalities. J. Optim. Theory Appl. https://doi.org/10.1007/s10957-018-1427-x (2018)

Download references

Acknowledgements

M. D. P. Monteiro Marques was partially supported by National Funding from FCT—Fundação para a Ciência e Tecnologia, under the Project UID/MAT/04561/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel D. P. Monteiro Marques.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aliouane, F., Azzam-Laouir, D., Castaing, C. et al. Second-Order Time and State-Dependent Sweeping Process in Hilbert Space. J Optim Theory Appl 182, 153–188 (2019). https://doi.org/10.1007/s10957-018-01455-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-018-01455-x

Keywords

Mathematics Subject Classification

Navigation