Abstract
Using an explicit catching-up algorithm, we prove the existence of absolutely continuous as well as bounded variation continuous solutions to a second-order perturbed Moreau’s sweeping process with the normal cone of a subsmooth moving set, which depends both on the time and on the state.
Similar content being viewed by others
References
Monteiro Marques, M.D.P.: Differential Inclusions in Nonsmooth Mechanical Problems, Shocks and Dry Friction. Birkhäuser, Basel (1993)
Moreau, J.J.: Rafle par un convexe variable I. Sem. Anal. Convexe. Montpellier. exposé No. 15. (1971)
Moreau, J.J.: Rafle par un convexe variable II. Sem. Anal. Convexe, Montpellier. exposé No. 3. (1972)
Moreau, J.J.: Evolution problem associated with a moving convex set in a Hilbert Space. J. Differ. Equ. 26, 347–374 (1977)
Castaing, C., Duc Ha, T.X., Valadier, M.: Evolution equations governed by the sweeping process. Set Valued Anal. 1, 109–139 (1993)
Castaing, C., Monteiro Marques, M.D.P.: Evolution problems associated with nonconvex closed moving sets with bounded variation. Port. Math. 53, 73–87 (1996)
Colombo, G., Goncharov, V.V.: The sweeping processes without convexity. Set Valued Anal. 7, 357–374 (1999)
Edmond, J.F., Thibault, L.: Relaxation of an optimal control problem involving a perturbed sweeping process. Math. Program. Ser. B 104, 347–373 (2005)
Edmond, J.F., Thibault, L.: BV solutions of nonconvex sweeping process differential inclusion with perturbation. J. Differ. Equ. 226, 135–179 (2006)
Jourani, A., Vilches, E.: Positively \(\alpha \)-far sets and existence results for generalized perturbed sweeping processes. J. Convex Anal. 23(3), 775–821 (2016)
Thibault, L.: Sweeping process with regular and nonregular sets. J. Differ. Equ. 193, 1–26 (2003)
Castaing, C.: Quelques problèmes d’évolution du second ordre. Sém. Anal. Convexe. Montpellier. Exposé No. 5. (1988)
Bounkhel, M., Laouir-Azzam, D.: Existence results for second-order nonconvex sweeping processes. Set Valued Anal. 12(3), 291–318 (2004)
Bounkhel, M.: General existence results for second-order non convex sweeping process with unbounded perturbations. Port. Math. 60(3), 269–304 (2003)
Castaing, C., Ibrahim, A.G., Yarou, M.: Existence problems in second-order evolution inclusions: discretization and variational approch. Taiwan. J. Math. 12(6), 1433–1475 (2008)
Azzam-Laouir, D., Izza, S.: Existence of solutions for second-order perturbed nonconvex sweeping process. Comput. Math. Appl. 62, 1736–1744 (2011)
Aliouane, F., Azzam-Laouir, D.: Second-order sweeping process with a Lipschitz perturbation. J. Math. Anal. Appl. 452, 729–746 (2017). https://doi.org/10.1016/j.jmaa.2018.11.007
Castaing, C., Ibrahim, A.G., Yarou, M.: Some contributions to nonconvex sweeping process. J. Nonlinear Convex Anal. 10(1), 1–20 (2009)
Adly, S., Le, B.K.: Unbounded second-order state-dependent Moreau’s sweeping processes in Hilbert spaces. J. Optim. Theory Appl. 169, 407–423 (2016)
Adly S., Nacry, F.: An existence result for discontinuous second-order nonconvex state-dependent sweeping process. Appl. Math. Optim. https://doi.org/10.1007/s00245-017-9446-9 (2017)
Lounis, S., Haddad, T., Sene, M.: Non-convex second-order Moreau’ sweeping processes in Hilbert spaces. J. Fixed Point Theory Appl. 19(4), 2895–2908 (2017)
Noel, J.: Second-order general perturbed sweeping process differential inclusion. J. Fixed Point Theory Appl. 20, 133 (2018). https://doi.org/10.1007/s11784-018-0609-3
Haddad, T., Noel, J., Thibault, L.: Perturbed sweeping process with a subsmooth set depending on the state. J. Linear Nonlinear Anal. 2(1), 155–174 (2013)
Jourani, A., Vilches, E.: Moreau-Yosida regularization of state-dependent sweeping processes with nonregular sets. J. Optim. Theory Appl. 173, 91 (2017). https://doi.org/10.1007/s10957-017-1083-6
Adly, S., Le, B.K.: Unbounded state-dependent sweeping process with perturbations in uniformly convex and q-uniformly smooth Banach spaces. Numer. Algebra Control Optim. 8, 81–95 (2018)
Aliouane, F., Azzam-Laouir, D.: A second-order differential inclusion with proximal normal cone in Banach spaces. Topol. Methods Nonlinear Anal. 44(1), 143–160 (2014)
Bounkhel, M., Al-Yusof, R.: First and second-order convex sweeping processes in reflexive smooth Banach spaces. Set Valued Var. Anal. 18(2), 151–182 (2010)
Castaing, C., Marques, M.M., Raynaud de Fitte, P.: Second-order evolution problems with time dependent maximal monotone operator. In: Advances in Mathematical Economics, vol 23 (2018)
Rockafellar, R.T.: Directionally Lipschitzian functions and subdifferential calculus. Proc. Lond. Math. Soc. 39, 331–355 (1979)
Rockafellar, R.T., Wets, R.: Variational Analysis. Springer, Berlin (1998)
Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, Hoboken (1983)
Clarke, F.H., Stern, R.J., Wolenski, P.R.: Proximal smoothness and the lower-\(C^2\) property. J. Convex Anal. 2, 117–144 (1995)
Mordukhovich, B.S., Shao, Y.: Nonsmooth sequential analysis in Asplund spaces. Trans. Am. Math. Soc. 4, 1235–1279 (1996)
Poliquin, R.A., Rockafellar, R.T., Thibault, L.: Local differentiability of distance functions. Trans. Am. Math. Soc. 352, 5231–5249 (2000)
Aussel, D., Daniilidis, A., Thibault, L.: Subsmooth sets: functional characterizations and related concepts. Trans. Am. Math. Soc. 357, 1275–1301 (2005)
Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions. Lectures Notes in Mathematics. Springer, Berlin (1977)
Dellacherie, C.: Ensembles analytiques, théorème de séparation et application. Séminaire de probabilités (Strasbourg) tome 9, 336–372 (1975)
Tolstonogov, A.A.: Differential Inclusions in a Banach Space. Springer, Berlin (2000)
Azzam-Laouir, D., Belhoula, W., Castaing, C., Monteiro Marques, M.D.P.: Multi-valued perturbation to evolution problems involving time dependent maximal monotone operators. Evol Prob Control Theory (Submitted)
Bernicot, F., Venel, J.: Existence of sweeping process in Banach spaces under directional prox-regularity. J. Convex Anal 17, 451–484 (2010)
Aliouane, F.: Existence de solutions pour des inclusions différentielles du second ordre gouvernées par le cône proximal dans les espaces de dimension infinie. Ph.D. thesis, Université de Jijel, Algérie (2015)
Adly, S., Haddad, T., Le, B.K.: State-dependent implicit sweeping process in the framework of quasistatic evolution quasi-variational inequalities. J. Optim. Theory Appl. https://doi.org/10.1007/s10957-018-1427-x (2018)
Acknowledgements
M. D. P. Monteiro Marques was partially supported by National Funding from FCT—Fundação para a Ciência e Tecnologia, under the Project UID/MAT/04561/2013.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Aliouane, F., Azzam-Laouir, D., Castaing, C. et al. Second-Order Time and State-Dependent Sweeping Process in Hilbert Space. J Optim Theory Appl 182, 153–188 (2019). https://doi.org/10.1007/s10957-018-01455-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-018-01455-x
Keywords
- Absolutely continuous
- Bounded variation
- Carathéodory perturbation
- Fréchet normal cone
- Set-valued perturbation
- Subsmoothness
- Sweeping process