Skip to main content
Log in

Metrically Regular Vector Field and Iterative Processes for Generalized Equations in Hadamard Manifolds

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper is focused on the problem of finding a singularity of the sum of two vector fields defined on a Hadamard manifold, or more precisely, the study of a generalized equation in a Riemannian setting. We extend the concept of metric regularity to the Riemannian setting and investigate its relationship with the generalized equation in this new context. In particular, a version of Graves’s theorem is presented and we also define some concepts related to metric regularity, including the Aubin property and the strong metric regularity of set-valued vector fields. A conceptual method for finding a singularity of the sum of two vector fields is also considered. This method has as particular instances: the proximal point method, Newton’s method, and Zincenko’s method on Hadamard manifolds. Under the assumption of metric regularity at the singularity, we establish that the methods are well defined in a suitable neighborhood of the singularity. Moreover, we also show that each sequence generated by these methods converges to this singularity at a superlinear rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2008)

    Book  MATH  Google Scholar 

  2. Adler, R.L., Dedieu, J.P., Margulies, J.Y., Martens, M., Shub, M.: Newton’s method on Riemannian manifolds and a geometric model for the human spine. IMA J. Numer. Anal. 22(3), 359–390 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hosseini, S., Pouryayevali, M.R.: Nonsmooth optimization techniques on Riemannian manifolds. J. Optim. Theory Appl. 158(2), 328–342 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Wang, J.H.: Convergence of Newton’s method for sections on Riemannian manifolds. J. Optim. Theory Appl. 148(1), 125–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Da Cruz Neto, J.X., Ferreira, O.P., Pérez, L.R.L., Németh, S.Z.: Convex- and monotone-transformable mathematical programming problems and a proximal-like point method. J. Global Optim. 35(1), 53–69 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Rapcsák, T.: Smooth Nonlinear Optimization in \({\bf R}^n\), Nonconvex Optimization and its Applications, vol. 19. Kluwer Academic Publishers, Dordrecht (1997)

    Book  MATH  Google Scholar 

  7. Ferreira, O.P., Oliveira, P.R.: Proximal point algorithm on Riemannian manifolds. Optimization 51(2), 257–270 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Li, C., López, G., Martín-Márquez, V.: Monotone vector fields and the proximal point algorithm on Hadamard manifolds. J. Lond. Math. Soc. (2) 79(3), 663–683 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Li, C., Yao, J.C.: Variational inequalities for set-valued vector fields on Riemannian manifolds: convexity of the solution set and the proximal point algorithm. SIAM J. Control Optim. 50(4), 2486–2514 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wang, J.H., López, G., Martín Márquez, V., Li, C.: Monotone and accretive vector fields on Riemannian manifolds. J. Optim. Theory Appl. 146(3), 691–708 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bergmann, R., Persch, J., Steidl, G.: A parallel Douglas–Rachford algorithm for minimizing ROF-like functionals on images with values in symmetric Hadamard manifolds. SIAM J. Imaging Sci. 9(3), 901–937 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bačák, M., Bergmann, R., Steidl, G., Weinmann, A.: A second order nonsmooth variational model for restoring manifold-valued images. SIAM J. Sci. Comput. 38(1), A567–A597 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hawe, S., Kleinsteuber, M., Diepold, K.: Analysis operator learning and its application to image reconstruction. IEEE Trans. Image Process. 22(6), 2138–2150 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Freifeld, O., Black, M.J.: Lie bodies: a manifold representation of 3D human shape. In: Proceedings of ECCV 2012. Springer, Berlin (2012)

  15. Park, F.C., Bobrow, J.E., Ploen, S.R.: A Lie group formulation of robot dynamics. Int. J. Robot. Res. 14(6), 609–618 (1995)

    Article  Google Scholar 

  16. Bhattacharya, A., Bhattacharya, R.: Statistics on Riemannian manifolds: asymptotic distribution and curvature. Proc. Am. Math. Soc. 136(8), 2959–2967 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fletcher, P.T.: Geodesic regression and the theory of least squares on Riemannian manifolds. Int. J. Comput. Vis. 105(2), 171–185 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings, A View from Variational Analysis first/second edn. Springer series in operations research and financial engineering. Springer, New York (2009/2014)

  19. Németh, S.Z.: Variational inequalities on Hadamard manifolds. Nonlinear Anal. 52(5), 1491–1498 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, S.L., Li, C., Liou, Y.C., Yao, J.C.: Existence of solutions for variational inequalities on Riemannian manifolds. Nonlinear Anal. 71(11), 5695–5706 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Aragón Artacho, F.J., Dontchev, A.L., Geoffroy, M.H.: Convergence of the proximal point method for metrically regular mappings. In: CSVAA 2004—Control Set-Valued Analysis and Applications, ESAIM Proceedings, vol. 17, pp. 1–8. EDP Sciences, Les Ulis (2007)

  22. Aragón Artacho, F.J., Geoffroy, M.H.: Characterization of metric regularity of subdifferentials. J. Convex Anal. 15(2), 365–380 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Geoffroy, M.H., Piétrus, A.: An iterative method for perturbed generalized equations. C. R. Acad. Bulg. Sci. 57(11), 7–12 (2004)

    MathSciNet  MATH  Google Scholar 

  24. Wang, J., Li, C., Lopez, G., Yao, J.C.: Proximal point algorithms on Hadamard manifolds: linear convergence and finite termination. SIAM J. Optim. 26(4), 2696–2729 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sakai, T.: Riemannian Geometry, Translations of Mathematical Monographs, vol. 149. American Mathematical Society, Providence (1996)

    Google Scholar 

  26. Fernandes, T.A., Ferreira, O.P., Yun, Y.J.: On the superlinear convergence of Newton’s method on Riemannian manifolds. J. Optim. Theory Appl. (2017). https://doi.org/10.1007/s10957-017-1107-2

    MathSciNet  MATH  Google Scholar 

  27. Colao, V., López, G., Marino, G., Martín-Márquez, V.: Equilibrium problems in Hadamard manifolds. J. Math. Anal. Appl. 388(1), 61–77 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Bačák, M.: The proximal point algorithm in metric spaces. Israel J. Math. 194(2), 689–701 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Jost, J.: Riemannian Geometry and Geometric Analysis. Universitext. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  30. da Cruz Neto, J.X., Ferreira, O.P., Lucambio Pérez, L.R.: Contributions to the study of monotone vector fields. Acta Math. Hung. 94(4), 307–320 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sakai, T.: Comparison and Finiteness Theorems in Riemannian Geometry. In: Geometry of geodesics and related topics (Tokyo, 1982), Adv. Stud. Pure Math., vol. 3, pp. 125–181. North-Holland, Amsterdam (1984)

  32. Yamamoto, T.: Historical developments in convergence analysis for Newton’s and Newton-like methods. J. Comput. Appl. Math. 124(1–2), 1–23 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. da Cruz Neto, J.X., de Lima, L.L., Oliveira, P.R.: Geodesic algorithms in Riemannian geometry. Balk. J. Geom. Appl. 3(2), 89–100 (1998)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was completed while the first author was visiting the second and third authors at the Laboratoire de Mathématiques Informatique et Applications (LAMIA) of Université des Antilles (UA) during the period February to March 2017. He is grateful to their host institution for the congenial scientific atmosphere that it has provided during his visit. The work was financially supported by FAPEG and CNPq Grants: 305158/2014-7 and 302473/2017-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orizon P. Ferreira.

Additional information

Communicated by Sándor Zoltán Németh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, O.P., Jean-Alexis, C. & Piétrus, A. Metrically Regular Vector Field and Iterative Processes for Generalized Equations in Hadamard Manifolds. J Optim Theory Appl 175, 624–651 (2017). https://doi.org/10.1007/s10957-017-1195-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-017-1195-z

Keywords

Mathematics Subject Classification

Navigation