Skip to main content
Log in

Inner Regularizations and Viscosity Solutions for Pessimistic Bilevel Optimization Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Pessimistic bilevel optimization problems are not guaranteed to have a solution even when restricted classes of data are involved. Thus, we propose a concept of viscosity solution, which satisfactorily obviates the lack of optimal solutions since it allows to achieve in appropriate conditions the security value. Differently from the viscosity solution concept for optimization problems, introduced by Attouch (SIAM J Optim 6:769–806, 1996) and defined through a viscosity function that aims at regularizing the objective function, viscosity solutions for pessimistic bilevel optimization problems are defined through regularization families of the solutions map to the lower-level optimization. These families are termed “inner regularizations” since they approach the optimal solutions map from the inside. First, we investigate, in Banach spaces, several classical regularizations of parametric constrained minimum problems giving sufficient conditions for getting inner regularizations; then, we establish existence results for the corresponding viscosity solutions under possibly discontinuous data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leitmann, G.: On generalized Stackelberg strategies. J. Optim. Theory Appl. 26, 637–643 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  2. Loridan, P., Morgan, J.: New results on approximate solutions in two-level optimisation. Optimization 20, 819–836 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Lignola, M.B., Morgan, J.: Topological existence and stability for Stackelberg problems. J. Optim. Theory Appl. 84, 145–169 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Basar, T., Olsder, G.J.: Dynamic Noncooperative Games, 2nd edn. Academic Press, New York (1995)

    MATH  Google Scholar 

  5. Molodtsov, D.A., Fedorov, V.V.: Approximation of two-person games with information exchange. Comput. Math. Phys. 13, 123–142 (1973)

  6. Morgan, J.: Constrained well-posed two-level optimization problem. In: Clarke, F.H., Demyanov, V.F., Giannessi, F. (eds.) Non-smooth Optimization and Related Topics, pp. 307–325. Plenum Press, New York (1989)

    Chapter  Google Scholar 

  7. Aboussoror, A., Loridan, P.: Existence of solutions to two-level optimization problems with nonunique lower-level solutions. J. Math. Anal. Appl. 254, 348–357 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Loridan, P., Morgan, J.: Weak via strong Stackelberg problem: new results. J. Glob. Optim. 8, 263–287 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Luo, Z.Q., Pang, J.S., Ralph, D.: Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  10. Dempe, S.: Foundations of Bilevel Programming. Springer, Berlin (2002)

    MATH  Google Scholar 

  11. Aboussoror, A., Mansouri, A.: Existence solutions to weak nonlinear bilevel problems via minsup and d.c. problems. RAIRO Oper. Res. 42, 87–103 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dempe, S., Zemkoho, A.B.: On the Karush–Kuhn–Tucker reformulation of the bilevel optimization problem. Nonlinear Anal. 75(3), 1202–1218 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dempe, S., Mordukhovich, B.S., Zemkoho, A.B.: Necessary optimality conditions in pessimistic bilevel programming. Optimization 63, 505–523 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bonnel, H., Morgan, J.: Optimality conditions for semivectorial bilevel convex optimal control problems. In: Bailey, D.H., Bauschke, H.H., Borwein, P., Garvan, F., Théra, M., Vanderwerff, J., Wolkowicz, H. (eds.) Computational and Analytical Mathematics. Springer Proceedings in Mathematics, vol. 50, pp. 45–78. Springer, New York (2013)

  15. Colson, B., Marcotte, P., Savard, G.: An overview of bilevel programming. Ann. Oper. Res. 153, 235–256 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wiesemann, W., Tsoukalas, A., Kleniati, P.M., Rustem, B.: Pessimistic bilevel optimization. SIAM J. Optim. 23(1), 353–380 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dempe, S., Kalashnikov, V., Pérez-Valdés, G.A., Kalashnykova, N.: Bilevel Programming Problems, Theory, Algorithms and Applications to Energy Networks. Springer, Berlin (2015)

    MATH  Google Scholar 

  18. Lignola, M.B., Morgan, J.: Approximating security values of minsup problems with quasi-variational inequality constraints. Pac. J. Optim. 10(4), 749–765 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Lignola, M.B., Morgan, J.: Viscosity solutions for bilevel problems with Nash equilibrium constraints. Far East J. Appl. Math. 88(1), 15–34 (2014)

    MATH  Google Scholar 

  20. Lignola, M.B., Morgan, J.: A method to bypass the lack of solutions in MinSup problems under quasi-equilibrium constraints. Optim. Lett. 10(4), 833–846 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Del Prete, I., Lignola, M.B.: Variational properties of \(\Gamma ^-(d)\)-convergence. Ricerche di Matematica 31, 179–190 (1982)

    MathSciNet  MATH  Google Scholar 

  22. Mosco, U.: Convergence of convex sets and of solutions of variational inequalities. Adv. Math. 3, 510–585 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  23. Attouch, H.: Variational Convergence for Functions and Operators. Applicable Mathematics Series. Pitman, Advanced Publishing Program, Boston (1984)

    MATH  Google Scholar 

  24. Attouch, H.: Viscosity solutions of minimization problems. SIAM J. Optim. 6, 769–806 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Loridan, P., Morgan, J.: On Strict \(\varepsilon \)-Solutions for a two-level optimization problem. In: Feichtinger, G., Buhler, W., Radermacher, F.J., Stably, P. (eds.) Proceeding of the International Conference on Operation Research Vienna, Austria, 1990, pp. 165–172. Springer, Berlin (1992)

    Google Scholar 

  26. Lignola, M.B., Morgan, J.: Semicontinuities of marginal functions in a sequential setting. Optimization 24, 241–252 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lignola, M.B., Morgan, J.: Asymptotic behavior of semi-quasivariational optimistic bilevel problems in Banach spaces. J. Math. Anal. Appl. 424, 1–20 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Bank, B., Guddat, J., Klatte, D., Kummer, B., Tammer, K.: Nonlinear Parametric Optimization. Birkhäuser, Basel (1983)

    MATH  Google Scholar 

  29. Moreau, J.J.: Proximité et dualité dans un espace Hilbertien. Bulletin de la Societé Mathématique de France 93, 273–299 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control 14, 877–898 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lemaire, B.: The proximal algorithm. In: Penot, J.P. (ed.) New Methods of Optimization and Their Industrial Use. International Series of Numerical Mathematics, vol. 87, pp. 73–87. Birkähuser, Basel (1989)

    Google Scholar 

  32. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lin, G., Xu, M., Ye, J.J.: On solving simple bilevel programs with a nonconvex lower level program. Math. Program. 144, 277–305 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Xu, M., Ye, J.J.: A smoothing augmented Lagrangian method for solving simple bilevel programs. Comput. Optim. Appl. 59(1–2), 353–377 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Stein, O., Still, G.: On generalized semi-infinite optimization and bilevel optimization. Eur. J. Oper. Res. 142, 444–462 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. Stein, O.: Bilevel Strategies in Semi-infinite Programming. Kluwer, Boston (2003)

    Book  MATH  Google Scholar 

  37. Günzel, H., Jongen, HTh, Stein, O.: On the closure of the feasible set in generalized semi-infinite programming. Cent. Eur. J. Oper. Res. 15, 271–280 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Associate Editor and the anonymous referees for their valuable comments and suggestions that have significantly improved an earlier version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline Morgan.

Additional information

Communicated by Alexander Mitsos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lignola, M.B., Morgan, J. Inner Regularizations and Viscosity Solutions for Pessimistic Bilevel Optimization Problems. J Optim Theory Appl 173, 183–202 (2017). https://doi.org/10.1007/s10957-017-1085-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-017-1085-4

Keywords

Mathematics Subject Classification

Navigation