Barbu, V.: Optimal control of Navier–Stokes equations with periodic inputs. Nonlinear Anal. Theory Methods Appl. 31, 15–31 (1988)
MathSciNet
Article
MATH
Google Scholar
Bewley, T., Temam, R., Ziane, M.: Existence and uniqueness of optimal control to the Navier–Stokes equations. C. R. Acard. Sci. Paris 30, 1007–1011 (2000)
MathSciNet
Article
MATH
Google Scholar
Casas, E.: An optimal control problem governed by the evolution Navier–Stokes equations, Chapter 4. In: Sritharan, S. (ed.) Optimal Control of Viscous Flow. Society for Industrial and Applied Mathematics (SIAM), 3600 University City Science Center, Philadelphia (1998)
Casas, E., Mateos, M., Raymond, J.-P.: Error estimates for the numerical approximation of a distributed control problem for the steady-state Navier–Stokes equations. SIAM J. Control Optim. 46, 952–982 (2007)
MathSciNet
Article
MATH
Google Scholar
De Los Reyes, J.C., Tröltzsch, F.: Optimal control of the stationary Navier–Stokes equations with mixed control-state constraints. SIAM J. Control Optim. 46, 604–629 (2007)
MathSciNet
Article
MATH
Google Scholar
De Los Reyes, J.C., Griesse, R.: State-constrained optimal control of the three-dimensional stationary Navier–Stokes equations. J. Math. Anal. Appl. 343, 257–272 (2008)
MathSciNet
Article
MATH
Google Scholar
Desai, M., Ito, K.: Optimal controls of Navier–Stokes equations. SIAM J. Control Optim. 32, 1428–1446 (1994)
MathSciNet
Article
MATH
Google Scholar
Ton, B.A.: An optimal control free boundary problem for the Navier–Stokes equations. Nonliner Anal. 63, 831–839 (2005)
MathSciNet
Article
MATH
Google Scholar
Wang, G.: Optimal control of 3-dimensional Navier–Stokes equations with state constraints. SIAM J. Control Optim. 41, 583–606 (2002)
MathSciNet
Article
MATH
Google Scholar
Casas, E., Tröltzsch, F.: First- and second-order optimality conditions for a class of optimal control problems with quasilinear elliptic equations. SIAM J. Control Optim. 48, 688–718 (2009)
MathSciNet
Article
MATH
Google Scholar
Li, X., Yong, J.: Optimal Control Theory for Infinite Dimensional Systems. Birkhäuser, Boston (1995)
Book
Google Scholar
Raymond, J.-P., Zidani, H.: Pontryagin’s principle for time-optimal problems. J. Optim. Theory Appl. 101, 375–402 (1999)
MathSciNet
Article
MATH
Google Scholar
Raymond, J.-P., Zidani, H.: Pontryagin’s principle for state-constrained control problems governed by parabolic equations with unbounded controls. SIAM Control Optim. 36, 1853–1879 (1998)
MathSciNet
Article
MATH
Google Scholar
Constantin, P., Foias, C.: Navier–Stokes Equations. The University of Chicago Press, Chicago and London (1988)
MATH
Google Scholar
Temam, R.: Navier–Stokes Equations, Theory and Numerical Analysis. North-Holland Publishing Company, Amsterdam, New York, Oxford (1979)
Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York, Dordrecht, Heidelberg, London (2011)
Lions, J.L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications. Springer, Berlin (1972)
Book
MATH
Google Scholar
Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence, Rhode Island (2010)
Zeidler, E.: Nonlinear Functional Analysis and its Applications. II A, Linear Monotone Operator, Springer (1990)
Hartman, P.: Ordinary Differential Equations, Wiley (1964)
Dieudonné, J.: Foundation of Modern Analysis. Academic Press, New York (1969)
MATH
Google Scholar