Journal of Optimization Theory and Applications

, Volume 170, Issue 3, pp 916–931 | Cite as

Enlargement of Monotone Vector Fields and an Inexact Proximal Point Method for Variational Inequalities in Hadamard Manifolds

  • Edvaldo E. A. Batista
  • Glaydston de Carvalho Bento
  • Orizon P. Ferreira


In this paper, an inexact proximal point method for variational inequalities in Hadamard manifolds is introduced and its convergence properties are studied. To present our method, we generalize the concept of enlargement of monotone operators, from a linear setting to the Riemannian context. As an application, an inexact proximal point method for constrained optimization problems is obtained.


Enlargement of vector fields Inexact proximal Constrained optimization Hadamard manifold 

Mathematics Subject Classification

90C33 65K05 47J25 



The work was supported by FAPEG and CNPq Grants 458479/2014-4, 471815/2012-8, 303732/2011-3, 312077/2014-9, 305158/2014-7.


  1. 1.
    Ahmadi, P., Khatibzadeh, H.: On the convergence of inexact proximal point algorithm on Hadamard manifolds. Taiwan. J. Math. 18(2), 419–433 (2014)MathSciNetGoogle Scholar
  2. 2.
    Bačák, M.: The proximal point algorithm in metric spaces. Isr. J. Math. 194(2), 689–701 (2013)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bento, G.C., Ferreira, O.P., Oliveira, P.R.: Proximal point method for a special class of nonconvex functions on Hadamard manifolds. Optimization 64(2), 289–319 (2015)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Papa Quiroz, E.A., Oliveira, P.R.: Full convergence of the proximal point method for quasiconvex functions on Hadamard manifolds. ESAIM Control Optim. Calc. Var. 18(2), 483–500 (2012)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Tang, G., Huang, N.: An inexact proximal point algorithm for maximal monotone vector fields on Hadamard manifolds. Oper. Res. Lett. 41(6), 586–591 (2013)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Wang, J., Li, C., Lopez, G., Yao, J.C.: Convergence analysis of inexact proximal point algorithms on Hadamard manifolds. J. Global Optim. 61(3), 553–573 (2015)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bento, G.C., Melo, J.G.: Subgradient method for convex feasibility on Riemannian manifolds. J. Optim. Theory Appl. 152(3), 773–785 (2012)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Colao, V., López, G., Marino, G., Martín-Márquez, V.: Equilibrium problems in Hadamard manifolds. J. Math. Anal. Appl. 388(1), 61–77 (2012)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Da Cruz Neto, J.X., Ferreira, O.P., Pérez, L.R.L., Németh, S.Z.: Convex- and monotone-transformable mathematical programming problems and a proximal-like point method. J. Global Optim. 35(1), 53–69 (2006)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Rapcsák, T.: Smooth Nonlinear Optimization in \(\mathbf{R}^n\), Nonconvex Optimization and its Applications, vol. 19. Kluwer Academic Publishers, Dordrecht (1997)CrossRefGoogle Scholar
  11. 11.
    Adler, R.L., Dedieu, J.P., Margulies, J.Y., Martens, M., Shub, M.: Newton’s method on Riemannian manifolds and a geometric model for the human spine. IMA J. Numer. Anal. 22(3), 359–390 (2002)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20(2), 303–353 (1999)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Karmarkar, N.: Riemannian geometry underlying interior-point methods for linear programming. In: Lagarias, J.C., Todd, M.J. (eds.) Mathematical Developments Arising from Linear Programming (Brunswick, ME, 1988), Contemp. Math., vol. 114, pp. 51–75. American Mathematical Soceity, Providence, RI (1990)Google Scholar
  14. 14.
    Nesterov, Y.E., Todd, M.J.: On the Riemannian geometry defined by self-concordant barriers and interior-point methods. Found. Comput. Math. 2(4), 333–361 (2002)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Smith, S.T.: Optimization techniques on Riemannian manifolds. In: Hamiltonian and Gradient Flows, Algorithms and Control, Fields Inst. Commun., vol. 3, pp. 113–136. American Mathematical Soceity, Providence, RI (1994)Google Scholar
  16. 16.
    Németh, S.Z.: Variational inequalities on Hadamard manifolds. Nonlinear Anal. 52(5), 1491–1498 (2003)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Li, C., Yao, J.C.: Variational inequalities for set-valued vector fields on Riemannian manifolds: convexity of the solution set and the proximal point algorithm. SIAM J. Control Optim. 50(4), 2486–2514 (2012)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Fang, C., Chen, Sl: A projection algorithm for set-valued variational inequalities on Hadamard manifolds. Optim. Lett. 9(4), 779–794 (2015)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Li, S.L., Li, C., Liou, Y.C., Yao, J.C.: Existence of solutions for variational inequalities on Riemannian manifolds. Nonlinear Anal. 71(11), 5695–5706 (2009)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Tang, G., Wang, X., Liu, H.: A projection-type method for variational inequalities on Hadamard manifolds and verification of solution existence. Optimization 64(5), 1081–1096 (2015)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Tang, G., Zhou, L., Huang, N.: The proximal point algorithm for pseudomonotone variational inequalities on Hadamard manifolds. Optim. Lett. 7(4), 779–790 (2013)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Ferreira, O.P., Oliveira, P.R.: Proximal point algorithm on Riemannian manifolds. Optimization 51(2), 257–270 (2002)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Li, C., López, G., Martín-Márquez, V.: Monotone vector fields and the proximal point algorithm on Hadamard manifolds. J. Lond. Math. Soc. (2) 79(3), 663–683 (2009)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Burachik, R.S., Iusem, A.N., Svaiter, B.F.: Enlargement of monotone operators with applications to variational inequalities. Set-Valued Anal. 5(2), 159–180 (1997)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Burachik, R.S., Iusem, A.N.: A generalized proximal point algorithm for the variational inequality problem in a Hilbert space. SIAM J. Optim. 8(1), 197–216 (1998)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Burachik, R.S., Iusem, A.N.: Set-Valued Mappings and Enlargements of Monotone Operators, Springer Optimization and Its Applications, vol. 8. Springer, New York (2008)Google Scholar
  27. 27.
    do Carmo, M.P.: Riemannian Geometry. Mathematics: Theory and Applications. Birkhäuser Boston, Inc., Boston (1992)CrossRefGoogle Scholar
  28. 28.
    Sakai, T.: Riemannian Geometry, Translations of Mathematical Monographs, vol. 149. American Mathematical Society, Providence (1996)Google Scholar
  29. 29.
    Burachik, R., Drummond, L.M.G., Iusem, A.N., Svaiter, B.F.: Full convergence of the steepest descent method with inexact line searches. Optimization 32(2), 137–146 (1995)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Németh, S.Z.: Monotone vector fields. Publ. Math. Debrecen 54(3–4), 437–449 (1999)MathSciNetMATHGoogle Scholar
  31. 31.
    da Cruz Neto, J.X., Ferreira, O.P., Lucambio Pérez, L.R.: Monotone point-to-set vector fields. Balk. J. Geom. Appl. 5(1), 69–79 (2000)MathSciNetMATHGoogle Scholar
  32. 32.
    Cioranescu, I.: Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Mathematics and Its Applications, vol. 62. Kluwer, Dordrecht (1990)CrossRefMATHGoogle Scholar
  33. 33.
    Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, New York (2011)Google Scholar
  34. 34.
    da Cruz Neto, J.X., Ferreira, O.P., Lucambio Pérez, L.R.: Contributions to the study of monotone vector fields. Acta Math. Hung. 94(4), 307–320 (2002)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Brøndsted, A., Rockafellar, R.T.: On the subdifferentiability of convex functions. Proc. Am. Math. Soc. 16, 605–611 (1965)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms: Advanced Theory and Bundle Methods. II. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1993)MATHGoogle Scholar
  37. 37.
    Grohs, P., Hosseini, S.: \(\varepsilon \)-subgradient algorithms for locally lipschitz functions on Riemannian manifolds. Adv. Comput. Math. 42(2), 333–360 (2016)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Edvaldo E. A. Batista
    • 1
  • Glaydston de Carvalho Bento
    • 2
  • Orizon P. Ferreira
    • 2
  1. 1.Universidade Federal do Oeste da BahiaBarreirasBrazil
  2. 2.IMEUniversidade Federal de GoiásGoiâniaBrazil

Personalised recommendations