Skip to main content
Log in

A Generalization of Ritz-Variational Method for Solving a Class of Fractional Optimization Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper presents an approximate method for solving a class of fractional optimization problems with multiple dependent variables with multi-order fractional derivatives and a group of boundary conditions. The fractional derivatives are in the Caputo sense. In the presented method, first, the given optimization problem is transformed into an equivalent variational equality; then, by applying a special form of polynomial basis functions and approximations, the variational equality is reduced to a simple linear system of algebraic equations. It is demonstrated that the derived linear system has a unique solution. We get an approximate solution for the initial optimization problem by solving the final linear system of equations. The choice of polynomial basis functions provides a method with such flexibility that all initial and boundary conditions of the problem can be easily imposed. We extensively discuss the convergence of the method and, finally, present illustrative test examples to demonstrate the validity and applicability of the new technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Agrawal, O.M.P.: Formulation of Euler–Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272, 368–379 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Almeida, R., Torres, D.F.M.: Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives. Commun. Nonlinear Sci. Numer. Simul. 16, 1490–1500 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Almeida, R., Torres, D.F.M.: Calculus of variations with fractional derivatives and fractional integrals. Appl. Math. Lett. 22, 1816–1820 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Agrawal, O.M.P.: Fractional variational calculus in terms of Riesz fractional derivatives. J. Phys. Math. Theo. 40, 6287–6303 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Almeida, R., Torres, D.F.M.: Fractional variational calculus for nondifferentiable functions. Comput. Math. Appl. 61, 3097–3104 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Agrawal, O.M.P.: Generalized variational problems and Euler–Lagrange equations. Comput. Math. Appl. 59, 1852–1864 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Agrawal, O.M.P.: Fractional variational calculus and transversality conditions. J. Phys. Math. Gen. 39, 10375–10384 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Agrawal, O.M.P.: Generalized Euler–Lagrange equations and transversality conditions for FVPs in terms of the Caputo derivative. J. Vib. Control 13, 1217–1237 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Malinowska, A.B., Torres, D.F.M.: Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative. Comput. Math. Appl. 59, 3110–3116 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Yousefi, S.A., Dehghan, M., Lotfi, A.: Generalized Euler–Lagrange equations for fractional variational problems with free boundary conditions. Comput. Math. Appl. 62, 987–995 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Baleanu, D., Trujillo, J.J.: On exact solutions of class of fractional Euler–Lagrange equations. Nonlinear Dyn. 52, 331–335 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Agrawal, O.M.P.: A general finite element formulation for fractional variational problems. J. Math. Anal. Appl. 337, 1–12 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Pooseh, S., Almeida, R., Torres, D.F.M.: Discrete direct methods in the fractional calculus of variations. Comput. Math. Appl. 66, 668–676 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lotfi, A., Yousefi, S.A.: A numerical technique for solving a class of fractional variational problems. J. Comput. Appl. Math. 237, 633–643 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang, D., Xiao, A.: Fractional variational integrators for fractional variational problems. Commun. Nonlinear Sci. Numer. Simul. 17, 602–610 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Maleki, M., Hashim, I., Abbasbandy, A., Alsaedi, A.: Direct solution of a type of constrained fractional variational problems via an adaptive pseudospectral method. J. Comput. Appl. Math. 283, 41–57 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lotfi, A., Yousefi, S.A.: Epsilon–Ritz method for solving a class of fractional constrained optimization problems. J. Optim. Theor. Appl. 163, 884–899 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zeidler, E.: Applied Functional Analysis Applications to Mathematical Physics. Springer, New York (1991)

    MATH  Google Scholar 

  19. Rivlin, T.J.: An Introduction to the Approximation of Functions. Dover Publications, New York (1981)

    MATH  Google Scholar 

  20. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, Amsterdam (2006)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohrab Ali Yousefi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lotfi, A., Yousefi, S.A. A Generalization of Ritz-Variational Method for Solving a Class of Fractional Optimization Problems. J Optim Theory Appl 174, 238–255 (2017). https://doi.org/10.1007/s10957-016-0912-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-016-0912-3

Keywords

Mathematics Subject Classification

Navigation