El Ghami, M., Ivanov, I.D., Roos, C., Steihaug, T.: A polynomial-time algorithm for LO based on generalized logarithmic barrier functions. Int. J. Appl. Math. 21, 99–115 (2008)
MathSciNet
MATH
Google Scholar
Roos, C., Terlaky, T., Vial, J.Ph: Theory and Algorithms for Linear Optimization, An Interior Point Approach. Wiley, Chichester (1997)
MATH
Google Scholar
Peng, J., Roos, C., Terlaky, T.: A new and efficient large-update interior point method for linear optimization. J. Comput. Technol. 6, 61–80 (2001)
MathSciNet
MATH
Google Scholar
Bai, Y.Q., El Ghami, M., Roos, C.: A comparative study of kernel functions for primal-dual interior point algorithms in linear optimization. SIAM. J. Optim. 15(1), 101–128 (2004)
MathSciNet
Article
MATH
Google Scholar
El Ghami, M., Guennoun, Z.A., Bouali, S., Steihaug, T.: Interior point methods for linear optimization based on a kernel function with a trigonometric barrier term. J. Comput. Appl. Math. 236, 3613–3623 (2012)
MathSciNet
Article
MATH
Google Scholar
Peyghami, M.R., Hafshejani, S.F., Shirvani, L.: Complexity of interior point methods for linear optimization based on a new trigonometric kernel function. J. Comput. Appl. Math. 255, 74–85 (2014)
MathSciNet
Article
MATH
Google Scholar
Peyghami, M.R., Hafshejani, S.F.: Complexity analysis of an interior point algorithm for linear optimization based on a new proximity function. Numer. Algorithms 67, 33–48 (2014)
MathSciNet
Article
MATH
Google Scholar
Cai, X.Z., Wang, G.Q., El Ghami, M., Yue, Y.J.: Complexity analysis of primal-dual interior-point methods for linear optimization based on a new parametric kernel function with a trigonometric barrier term. Abstr. Appl. Anal., Art. ID 710158, 11 (2014)
Karmarkar, N.K.: A new polynomial-time algorithm for linear programming. In: Proceedings of the 16th Annual ACM Symposium on Theory of Computing, vol. 4, pp. 373–395 (1984)
Bai, Y.Q., Roos, C.: A primal-dual interior point method based on a new kernel function with linear growth rate. In: Proceedings of the 9th Australian Optimization Day, Perth, Australia (2002)
Peng, J., Roos, C., Terlaky, T.: Self-Regularity: A New Paradigm for Primal-Dual Interior Point Algorithms. Princeton University Press, Princeton (2002)
MATH
Google Scholar
Ye, Y.: Interior Point Algorithms, Theory and Analysis. Wiley, Chichester (1997)
Book
MATH
Google Scholar
Megiddo, N.: Pathways to the optimal set in linear programming. In: Megiddo, N. (ed.) Progress in Mathematical Programming: Interior Point and Related Methods, pp. 131–158. Springer, New York (1989)
Chapter
Google Scholar
Sonnevend, G.: An “analytic center” for polyhedrons and new classes of global algorithms for linear (smooth, convex) programming. In: Prekopa, A., Szelezsan, J., Strazicky, B. (eds.) System Modelling and Optimization: Proceedings of the 12th IFIP-Conference, Budapest, Hungary, 1985. Lecture Notes in Control and Information Science, vol. 84, pp. 866–876. Springer, Berlin (1986)
Kheirfam, B., Moslem, M.: A polynomial-time algorithm for linear optimization based on a new kernel function with trigonometric barrier term. YUJOR 25(2), 233–250 (2015)
MathSciNet
Article
Google Scholar
Li, X., Zhang, M.: Interior-point algorithm for linear optimization based on a new trigonometric kernel function. Oper. Res. Lett 43(5), 471–475 (2015)
MathSciNet
Article
Google Scholar
Cho, G.M.: An interior point algorithm for linear optimization based on a new barrier function. Appl. Math. Comput. 218, 386–395 (2011)
MathSciNet
MATH
Google Scholar