Skip to main content
Log in

Manifold-Following Approximate Solution of Completely Hypersensitive Optimal Control Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The solution to a completely hypersensitive optimal control problem may shadow trajectories on the stable and unstable manifolds of an equilibrium point in the state–costate phase space. If such shadowing occurs, the solution of the Hamiltonian boundary value problem, that constitutes the first-order necessary conditions for optimality, can be approximated as a composite of an initial segment on the stable manifold leading to the equilibrium point and a final segment on the unstable manifold departing from the equilibrium point. Using a dichotomic basis, the Hamiltonian vector field can be decomposed into stable and unstable components, and the unspecified boundary conditions for the initial and terminal segments can be determined such that the initial and final conditions are, respectively, on the stable and unstable manifolds of the equilibrium point. In this paper, we propose and justify the use of finite-time Lyapunov vectors to construct an approximate dichotomic basis and develop a corresponding manifold-following solution approximation method. The method is illustrated on two examples and shown to be more accurate than a similar method that uses eigenvectors of the frozen-time linearized dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Lam, S.H.: Personal communication, Princeton University, Princeton, NJ (1990)

References

  1. Bryson, A.E., Ho, Y.-C.: Applied Optimal Control: Optimization, Estimation, and Control. Taylor & Francis, New York, NY (1975). revised-printing

    Google Scholar 

  2. Rao, A.V., Mease, K.D.: Dichotomic basis approach to solving hyper-sensitive optimal control problems. Automatica 35, 3633–3642 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Rao, A.V., Mease, K.D.: Eigenvector approximate dichotomic basis method for solving hyper-sensitive optimal control problems. Opt. Control Appl. Methods 21, 1–19 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Oberle, H.J., Grimm, W.: BNDSCO—a program for the numerical solution of optimal controlproblems. Internal Report No. 515–89/22, Institute for Flight SystemsDynamics, DLR, Oberpfaffenhofen, Germany (1989)

  5. Ascher, U.M., Mattheij, R.M., Russell, R.D.: Numerical Solution of Boundary Value Problems for Ordinary Differential Equations. SIAM Press, Philadelphia (1995)

    Book  MATH  Google Scholar 

  6. Wilde, R.R., Kokotovic, P.K.: A dichotomy in linear control theory. IEEE Trans. Autom. Control 17, 382–383 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  7. Anderson, B.O., Kokotovic, P.K.: Optimal control problems over large time intervals. Automatica 23, 355–363 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chow, J.H.: A class of singularly perturbed nonlinear, fixed end-point control problems. J. Opt. Theory Appl. 29, 231–251 (1979)

    Article  MATH  Google Scholar 

  9. Kokotovic, P.V., Khalil, H.K., O’Reilly, J.: Singular Perturbation Methods in Control: Analysis and Design. Academic Press, New York (1986)

    MATH  Google Scholar 

  10. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31, 53–98 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  11. Sacker, R.J., Sell, G.R.: The spectrum of an invariant submanifold. J. Differ. Equ. 38, 135–160 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  12. Barreira, L., Pesin, Ya B.: Lyapunov Exponents and Smooth Ergodic Theory. American Mathematical Society, Providence (2002)

    MATH  Google Scholar 

  13. Lyapunov, A.M.: The general problem of stability of motion. Int. J. Control 55, 531–773 (1992)

    Article  MathSciNet  Google Scholar 

  14. Mease, K.D., Bharadwaj, S., Iravanchy, S.: Timescale analysis for nonlinear dynamical systems. J. Guid. Control Dyn. 26(1), 318–330 (2003)

    Article  Google Scholar 

  15. Mease, K.D., Topcu, U., Aykutlug, E., Maggia, M.: Characterizing two-timescale nonlinear dynamics using finite-time Lyapunov exponents and subspaces. Commun. Nonlinear Sci. Numer. Simul. 36, 148–174 (2016)

  16. Danforth, C.M., Kalnay, E.: Using singular value decomposition to parametrize state-dependent model errors. J. Atmos. Sci. 65(4), 1467–1478 (2008)

    Article  Google Scholar 

  17. Danforth, C.M., Yorke, J.A.: Making forecasts for chaotic physical processes. Phys. Rev. Lett. 96, 144102 (2006)

    Article  Google Scholar 

  18. Hartmann, D.L., Buizza, R., Palmer, T.N.: Finite-time instabilities of lower-stratospheric flow. J. Atmos. Sci. 53(15), 2129–2143 (1996)

    Article  Google Scholar 

  19. Kalnay, E.: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  20. Haller, G.: Distinguished material surfaces and coherent structures in three-dimensional fluid flows. Phys. D 149, 248–277 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Haller, G.: A variational theory of hyperbolic Lagrangian coherent structures. Phys. D 240, 574–598 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lekien, F., Shadden, S.C., Marsden, J.E.: Lagrangian coherent structures in n-dimensional systems. J. Math. Phys. 48, 065404 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shadden, S.C., Lekien, F., Marsden, J.E.: Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Phys. D 212, 271–304 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wolfe, C.L., Samelson, R.M.: An efficient method for recovering Lyapunov vectors from singular vectors. Tellus 59A, 355–366 (2007)

    Article  Google Scholar 

  25. Adrover, A., Creta, F., Giona, M., Valorani, M.: Biorthogonalization, geometric invariant properties and rate-based estimate of Lyapunov spectra. Phys. Lett. A 342, 421–429 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Adrover, A., Creta, F., Valorani, M., Vitacolonna, V.: Natural tangent dynamics with recurrent biorthonormalizations: a geometric computational approach to dynamical systems exhibiting slow manifolds and periodic/chaotic limit sets. Phys. D 213, 121–146 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Guckenhheimer, J., Kuehn, C.: Computing slow manifolds of saddle type. SIAM J. Appl. Dyn. Syst. 8(3), 854–879 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Osinga, H.M., Tsaneva-Atanasova, K.T.: Geometric analysis of transient bursts. Chaos 23, 046107 (2013)

    Article  MathSciNet  Google Scholar 

  29. Fleming, W.H., Rishel, R.W.: Deterministic and Stochastic Optimal Control. Springer, New York (1975)

    Book  MATH  Google Scholar 

  30. Patterson, M.A., Rao, A.V.: GPOPS-II: a MATLAB software for solving multiple-phase optimal control problems using hp-adaptive gaussian quadrature collocation methods and sparse nonlinear programming. ACM Trans. Math. Softw. 41(1), 1–37 (2014)

    Article  MathSciNet  Google Scholar 

  31. Arnol’d, V.I.: Ordinary Differential Equations. Springer, Berlin (1992)

    MATH  Google Scholar 

  32. Kelly, H.J.: Aircraft maneuver optimization by reduced-order approximations. In: Leondes, C.T. (ed.) Control and Dynamic Systems. Academic Press, New York (1973)

    Google Scholar 

  33. Aykutlug, E., Maggia, M., Mease, K.D.: Solving partially hyper-sensitive optimal control problems using manifold structure. In: 9th IFAC Symposium on Nonlinear Control Systems (NOLCOS 2013), Nonlinear Control Systems, vol. 9, Part 1, pp. 187–192. Toulouse, France. International Federation of Automatic Control (2013)

  34. Dieci, L., Van Vleck, E.S.: Lyapunov spectral intervals: theory and computation. J. Numer. Anal. 40(5), 516–542 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. Goldhirsch, I., Sulem, P.L., Orszag, S.A.: Stability and Lyapunov stability of dynamical systems: a differential approach and a numerical method. Phys. D 27(3), 311–337 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  36. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  37. Doerner, R., Hubinger, B., Martienssen, W., Grossmann, S., Thomae, S.: Stable manifolds and predictability of dynamical systems. Chaos Solitons Fractals 10(11), 1759–1782 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  38. Vastano, J.A., Moser, R.D.: Short-time Lyapunov exponent analysis and the transition to chaos in Taylor–Couette flow. J. Fluid Mech. 233, 83–118 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  39. Topcu, U., Mease, K.D.: Using Lyapunov vectors and dichotomy to solve hyper-sensitive optimal control problems. In: Proceedings of the 45th IEEE Conference on Decision and Control, San Diego, CA, USA (2006)

Download references

Acknowledgments

This work was supported by the National Science Foundation under Grants CMMI-0010085 and CMMI-1069331.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth D. Mease.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aykutlug, E., Topcu, U. & Mease, K.D. Manifold-Following Approximate Solution of Completely Hypersensitive Optimal Control Problems. J Optim Theory Appl 170, 220–242 (2016). https://doi.org/10.1007/s10957-016-0868-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-016-0868-3

Keywords

Mathematics Subject Classification

Navigation