Journal of Optimization Theory and Applications

, Volume 171, Issue 2, pp 643–665 | Cite as

Optimality Condition for Local Efficient Solutions of Vector Equilibrium Problems via Convexificators and Applications

  • Do Van  LuuEmail author


Fritz John and Karush–Kuhn–Tucker necessary conditions for local efficient solutions of constrained vector equilibrium problems in Banach spaces in which those solutions are regular in the sense of Ioffe via convexificators are established. Under suitable assumptions on generalized convexity, sufficient conditions are derived. Some applications to constrained vector variational inequalities and constrained vector optimization problems are also given.


Vector equilibrium problems Vector variational inequalities  Vector optimization problems Regular points in the sense of Ioffe  Fritz John and Karush–Kuhn–Tucker optimality conditions Convexificators 

Mathematics Subject Classification

90C46 91B50 49J52 



The author is grateful to the referees for their valuable comments and suggestions which improve the paper. This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. 101.01-2014.61.


  1. 1.
    Daniele, P.: Lagrange multipliers and infinite-dimensional equilibrium problems. J. Glob. Optim. 40, 65–70 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Giannessi, F., Mastroeni, G., Pellegrini, L.: On the theory of vector optimization and variational inequalities, image space analysis and separation. In: Giannessi, F. (ed.) Vector Variational Inequalities and Vector Equilibria: Mathematical Theories, pp. 153–215. Kluwer, Dordrecht (2000)CrossRefGoogle Scholar
  3. 3.
    Gong, X.H.: Optimality conditions for efficient solution to the vector equilibrium problems with constraints. Taiwan. J. Math. 16, 1453–1473 (2012)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Gong, X.H.: Optimality conditions for vector equilibrium problems. J. Math. Anal. Appl. 342, 1455–1466 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Gong, X.H.: Scalarization and optimality conditions for vector equilibrium problems. Nonlinear Anal. 73, 3598–3612 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Luu, D.V., Hang, D.D.: On optimality conditions for vector variational inequalities. J. Math. Anal. Appl. 412, 792–804 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Luu, D.V., Hang, D.D.: Efficient solutions and optimality conditions for vector equilibrium problems. Math. Methods Oper. Res. 79, 163–177 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ma, B.C., Gong, X.H.: Optimality conditions for vector equilibrium problems in normed spaces. Optimization 60, 1441–1455 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Morgan, J., Romaniello, M.: Scalarization and Kuhn–Tucker-like conditions for weak vector generalized quasivariational inequalities. J. Optim. Theory Appl. 130, 309–316 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ward, D.E., Lee, G.M.: On relations between vector optimization problems and vector variational inequalities. J. Optim. Theory Appl. 113, 583–596 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Yang, X.Q.: Continuous generalized convex functions and their characterizations. Optimization 54, 495–506 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Demyanov, V.F.: Convexification and concavification of a positively homogeneous function by the same family of linear functions, Universita di Pisa, Report 3, 208, 802 (1994)Google Scholar
  13. 13.
    Demyanov, V.F., Jeyakumar, V.: Hunting for a smaller convex subdifferential. J. Glob. Optim. 10, 305–326 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Jeyakumar, V., Luc, D.T.: Nonsmooth calculus, minimality, and monotonicity of convexificators. J. Optim. Theory Appl. 101, 599–621 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Jeyakumar, V., Luc, D.T.: Approximate Jacobian matrices for continuous maps and \(C^1\)-optimization. SIAM J. Control Optim. 36, 1815–1832 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley Interscience, New York (1983)zbMATHGoogle Scholar
  17. 17.
    Michel, P., Penot, J.-P.: Calcul sous-différentiel pour des fonctions lipschitziennes et nonlipschitziennes. C. R. Math. Acad. Sci. 12, 269–272 (1984)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Mordukhovich, B.S., Shao, Y.: On nonconvex subdifferential calculus in Banach spaces. J. Convex Anal. 2, 211–228 (1995)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Luu, D.V.: Convexificators and necessary conditions for efficiency. Optimization 63, 321–335 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Luu, D.V.: Necessary and sufficient conditions for efficiency via convexificators. J. Optim. Theory Appl. 160, 510–526 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Golestani, M., Nobakhtian, S.: Convexificators and strong Kuhn–Tucker conditions. Comp. Math. Appl. 64, 550–557 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Ioffe, A.D.: Necessary and sufficient conditions for a local minimum. 1: a reduction theorem and first order conditions. SIAM J. Control Optim. 17, 245–250 (1979)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute of Mathematics, Vietnam Academy of Science and TechnologyThang Long UniversityHanoiVietnam

Personalised recommendations